首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

2.
Saadet Gü          reyya B   lmen  Dijle K   pmen Korgun  Piraye Yargi  o  lu  Aysel A  ar 《Free radical research》2001,34(6):621-627
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

3.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

4.
Crassostrea gigas D-shaped larvae were subjected to different conditions of temperature and salinity for 24 h and four biomarkers (acetylcholinesterase (AChE) activity, thiobarbituric acid reactive substances (TBARS) levels, glutathione S-transferase (GST) and catalase (CAT) activities) were measured. AChE activity decreased when salinity increased from 25 to 30 and 35 psu at 20 and 25 degrees C. Temperature did not seem to have an influence on AChE activity. TBARS levels increased as a function of salinity when the temperature was maintained at 20 degrees C, whereas at 25 degrees C no effect of salinity could be observed. Variations in GST and CAT activities were not significant with salinity and temperature except that catalase activity was higher at 25 degrees C than at 20 degrees C. Exposure experiments were conducted at 23 degrees C and 30 psu with carbofuran (100 and 1000 microg/l) and malathion (100 and 300 microg/l). There was an inhibition of AChE activity with carbofuran, and a toxic effect shown by an increase in TBARS levels counteracted by increases in GST and CAT activities which protected the larvae. When two pairs of adults producing larvae were taken into consideration, significant differences in biomarker levels were noted between the larval offspring of each pair. Malathion induced a decrease in AChE activity and an increase in CAT activity.  相似文献   

5.
AIM: Behçet''s disease (BD) is an inflammatory vasculitis with immunologic, endothelial and neutrophil alterations. Adenosine deaminase (AD) is a marker of T-cell activation and is related to the production of reactive oxygen species by neutrophils with the production of NO(*), O(2)(*-), H(2)O(2) and OH(*). We reported increased tumour necrosis factor-alpha, soluble interleukin-2 receptor, interleukin-6, interleukin-8 and NO(*) in active BD. As there is a relation between cytokines, T cells and oxidative stress in inflammatory diseases, this study further evaluated: (1) plasma AD activity and its correlation with acute phase reactants; (2) thiobarbituric acid-reactive substances (TBARS) as an indicator for lipid peroxidation; and (3) antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and catalase in patients with BD. The effect of disease activity and correlations between the measured parameters were explored. METHODS: A total of 35 active (n=17) or inactive (n=18) patients with BD (16 men, 19 women) satisfying International Study Group criteria, and 20 age-matched and sex-matched controls (nine men, 11 women) were included in this cross-sectional case-control study. AD and TBARS were measured in plasma, catalase in red blood cells (RBC), and SOD and GSHPx in both plasma and RBC in both groups. Acute phase reactants (alpha(1)-antitrypsin, alpha(2)-macroglobulin, neutrophils, erythrocyte sedimentation rate) were used to classify patients as active or inactive. RESULTS: Plasma AD (mean+/-standard error of the mean, 36.1+/-0.7 U/l) and TBARS (4.2+/-0.1 nmol/ml) levels were significantly (for each, p<0.001) higher in BD than in controls (24.1+/-0.8 U/l and 1.6+/-0.1 nmol/ml, respectively). RBC catalase activity was significantly (p<0.001) lower in BD than in controls (120.9+/-3.8 versus 160.3+/-4.1 k/g haemoglobin). SOD and GSHPx activities were significantly lower in both plasma and erythrocytes of patients with BD than in controls (plasma SOD, 442.4+/-8.6 versus 636.4+/-9.2 U/ml, p<0.001; RBC SOD, 3719.2+/-66.0 versus 4849.7+/-49.0 U/g haemoglobin, p<0.001; plasma GSHPx, 73.1+/-1.5 versus 90.6+/-2.9 U/ml, p<0.001; RBC GSHPx, 600.7+/-8.0 versus 670.6+/-10.1 U/g haemoglobin, p<0.001). Active BD patients had significantly lower antioxidant enzymes (except RBC catalase) and higher AD and TBARS levels than inactive subjects (for each, p<0.01). When considering all BD patients, a significant positive correlation was present between AD and TBARS (p<0.001) whereas both AD and TBARS were negatively correlated with antioxidant enzymes (for each, p<0.05). CONCLUSIONS: AD and lipid peroxidation are increased and associated with defective antioxidants in BD, suggesting interactions between activated T cells and neutrophil hyperfunction. Measures of pro-oxidative stress and antioxidative defence with AD activity as an indicator of T-cell activation can be considered as significant supportive diagnostic indicators, especially in active disease. In addition, strengthening the antioxidant defence may contribute to treatment modalities.  相似文献   

6.
Contaminant related changes in behavioral, phase I and II metabolizing enzymes and pro-oxidant/antioxidant processes in the freshwater mussels Dreissena polymorpha exposed to metals and PCBs were assessed. Behavioral and biochemical responses including filtering rates, key phase I, II and antioxidant enzymes and levels of metallothioneins, glutathione, lipid peroxidation and DNA strand breaks were determined in digestive glands of mussels after being exposed to sublethal levels of mercury chloride, methyl mercury, cadmium and Aroclor 1260 during 5 days. In 7 out of 12 responses analyzed, mussels showed significant differences across treatments. Unusual properties of measured ethoxyresorufin-O-deethylase (EROD) activities indicated that mussels lack an inducible CYP1A enzymatic activity. Despite of using similar exposure levels, inorganic and organic mercury showed different biomarker patterns of response with methyl mercury being more bio-available and unable to induce metallothionein proteins. Mussels exposed to Cd presented higher levels of metallothioneins and an enhanced metabolism of glutathione, whereas those exposed to Aroclor showed their antioxidant glutathione peroxidase related enzyme activities inhibited. Although there was evidence for increased lipid peroxidation under exposure to inorganic and organic mercury, only mussels exposed to Aroclor had significant greater levels than those in controls.  相似文献   

7.
We studied the effects of different concentrations of mercury (0.0 to 100 μM) on growth and photosynthetic efficiency in rice plants treated for 21 d. In addition, we investigated how this metal affected the malondialdehyde (MDA) content as well as the activity of five antioxidant enzymes — superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), guaiacol peroxidase (POD), and catalase (CAT). Photosynthetic efficiency (Fμ/Fm) and seedling growth decreased as the concentration of Hg was increased in the growth media. Plants also responded to Hg-induced oxidative stress by changing the levels of their antioxidative enzymes. Enhanced lipid peroxidation was observed in both leaves and roots that had been exposed to oxidative stress, with leaves showing higher enzymatic activity. Both SOD and APX activities increased in treatments with up to 50 μM Hg, then decreased at higher concentrations. In the leaves, both CAT and POD activities increased gradually, with CAT levels decreasing at higher concentrations. In the roots, however, CAT activity remained unchanged while that of POD increased a bit more than did the control for concentrations of up to 10 μM Hg. At higher Hg levels, both CAT and POD activities decreased. GR activity increased in leaves exposed to no more than 0.25 μM Hg, then decreased gradually. In contrast, its activity was greatly inhibited in the roots. Based on these results, we suggest that when rice plants are exposed to different concentrations of mercury, their antioxidative enzymes become involved in defense mechanisms against the free radicals that are induced by this stress.  相似文献   

8.
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.  相似文献   

9.
To shed light on the association of lipid peroxidation and antioxidant status with the development of aberrant crypt foci (ACF), we studied the modulatory influence of resveratrol, supplemented in three dietary regimens (initiation, post-initiation and entire period) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. Rats were administered DMH (20 mg/kg body weight, s.c.) for 15 weeks and were supplemented with resveratrol (8 mg/kg body weight, p.o. everyday) in three dietary regimens. Intestines and colons were analyzed for the levels of diene conjugates (DC), lipid hydroperoxides (LOOHs) and thiobarbituric acid reactive substances (TBARS). Enzymic antioxidants (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX; glutathione S-transferase, GST; and glutathione reductase, GR) and non-enzymic reserve (reduced glutathione, GSH; ascorbate; and alpha-tocopherol) were also assessed in the intestine and colon. Unsupplemented DMH exposed rats showed significantly decreased levels/activities of tissue DC, LOOHs, TBARS, SOD, CAT, GSH, GR and significantly elevated (P<0.05) GPX, GST, alpha-tocopherol and ascorbate as compared to control rats. Resveratrol supplementation during the entire period of the study resulted in significant (P<0.01) modulation of lipid peroxidation markers and antioxidants status, which were paralleled with ACF suppression, as compared to DMH-alone treated rats. These results indicate that resveratrol effectively inhibits DMH-induced ACF and colonic tumor development.  相似文献   

10.
The aim of the present work was to evaluate the effect of the water soluble fraction of hydrocarbons (WSF) on the antioxidant status of the freshwater prawn Macrobrachium borellii. First, seasonal variations were studied in a non-polluted area. Hepatopancreas and gills showed season-related fluctuations in catalase (CAT), glutathione-S-transferase (GST) activities and in lipid peroxidation levels (LPO), but not in superoxide dismutase (SOD). Then, adults were exposed semi-statically to sublethal doses for 7days. CAT, SOD, GST, and glutathione peroxidase (GPx) activities and LPO, reduced glutathione (GSH) and protein oxidation (PO) levels were determined. Exposed individuals showed significant increases in CAT, SOD, and GST activities in hepatopancreas and CAT activity in gills. GPx activity did not vary in either tissues. While LPO levels increased, GSH levels decreased significantly in hepatopancreas of exposed animals, but PO levels showed no variation. Induction of SOD was also assessed by Real-time PCR mRNA expression in hepatopancreas. The non-enzymatic antioxidant activity was also tested; ABTS 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) was higher in hemolymph of treated-prawns compared to controls, but ferric reducing activity of plasma assay (FRAP) values did not change. Taken together, the present results indicated that the antioxidant defenses of M. borellii, mainly in hepatopancreas, were significantly affected by aquatic hydrocarbon contamination, regardless of the season.  相似文献   

11.
Cigarette smoking leads to uptake of a multitude of reactive chemicals including many electrophiles and may also give rise to oxidative stress. Human red blood cells are important targets for electrophilic and oxidant foreign compounds. We investigated the oxidative stress in erythrocytes upon cigarette smoking, and the response of antioxidant defense system against it. With this aim, simultaneous determination of erythrocyte superoxide dismutase (SOD), selenium dependent glutathione peroxidase (Se-GPx), catalase (CAT), glutathione S-transferase (GST) activities and plasma levels of thiobarbituric acid reactive substances (TBARS), and the degree of erythrocyte membrane lipid peroxidation (EMLP) were carried out in blood samples of smokers and their controls. Plasma TBARS levels and EMLP in smokers were significantly higher than the control levels (p < 0.01 and p < 0.005, respectively). SOD activity was diminished in smokers compared to nonsmoker controls (p < 0.005). Erythrocyte Se-GPx activity was also found significantly diminished in smokers (p < 0.005), while plasma Se-GPx activity was not changed. We observed that erythrocyte CAT activity was not different in smokers compared to nonsmoker controls. We found that the erythrocyte GST activity is significantly lower in young adult smokers (3.03 +/- 0.18 U/mg protein; mean +/- SEM; n = 46) than in nonsmoking contemporaries (3.98 +/- 0.26 U/mg protein; mean +/- SEM; n = 41). Together with previously reported data, it can be concluded that the decrease in GST activity leads to extra GST synthesis during erythrocyte proliferation. The same data were also analyzed for the sex differences. The statistically significant differences remained the same between nonsmoker and smoker females. Only EMLP degree and SOD activity were significantly different between nonsmoker and smoker males; however, when compared the parameters between male and female nonsmokers, GST activity was found to be significantly higher in females than that of males.  相似文献   

12.
Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3相似文献   

13.
Oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets grown in nutrient solution using sand as substrate. Thirty-day-old acclimated plants were treated for 9 days with four Hg levels (0, 1, 25 and 50 μM) in the substrate. Parameters such as growth, tissue Hg concentration, toxicity indicators (δ-aminolevulinic acid dehidratase, δ-ALA-D, activity), oxidative damage markers (TBARS, lipid peroxidation, and H2O2 concentration) and enzymatic (superoxide dismutase, SOD, catalase, CAT, and ascorbate peroxidase, APX) and non-enzymatic (non-protein thiols, NPSH, ascorbic acid, AsA, and proline concentration) antioxidants were investigated. Tissue Hg concentration increased with Hg levels. Root and shoot fresh weight and δ-ALA-D activity were significantly decreased at 50 μM Hg, and chlorophyll and carotenoid concentration were not affected. Shoot H2O2 concentration increased curvilinearly with Hg levels, whereas lipid peroxidation increased at 25 and 50 μM Hg, respectively, in roots and shoots. SOD activity showed a straight correlation with H2O2 concentration, whereas CAT activity increased only in shoots at 1 and 50 μM Hg. Shoot APX activity was either decreased at 1 μM Hg or increased at 50 μM Hg. Conversely, root APX activity was only increased at 1 μM Hg. In general, AsA, NPSH and proline concentrations increased upon addition of Hg, with the exception of proline in roots, which decreased. These changes in enzymatic and non-enzymatic antioxidants had a significant protective effect on P. glomerata plantlets under mild Hg-stressed conditions.  相似文献   

14.
The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.  相似文献   

15.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

16.
Limited information is available on the effects of chronic mercury exposure in relation to the risk of cardiovascular disease (CVD). It is known from in vitro and in vivo studies that Hg can promote lipid peroxidation through promotion of free radical generation, and interaction with antioxidative enzymes and reduction of bioavailable selenium. The objective of the study was to test the hypothesis that long-term past occupational exposure to elemental Hg (Hg0) can modify antioxidative capacity and promote lipid peroxidation in miners.

The study population comprised 54 mercury miners and 58 workers as the control group. The miners were examined in the post-exposure period. We evaluated their previous exposure to Hg0, the putative appearance of certain nonspecific symptoms and signs of micromercurialism, as well as the main behavioural and biological risk factors for CVD, and determined: 1) Hg and Se levels in blood and urine, 2) antioxidative enzymes, Cu/Zn superoxide dismutase (CuZn-SOD), catalase (CAT), and selenoenzyme glutathione peroxidase (GSH-Px) activity in erythrocytes as indirect indices of free radical activity, 3) pineal hormone melationin (MEL) in blood and urine, and 4) lipid hydroperoxides (LOOHs) and malondialdehyde (MDA) as lipid peroxidation products.

The mercury miners were intermittently exposed to Hg0 for periods of 7 to 31 years. The total number of exposure periods varied from 13 to 119. The cumulative U-Hg peak level varied from 794-11,365 μg/L. The current blood and urine Hg concentrations were practically on the same level in miners and controls. Miners showed some neurotoxic and nephrotoxic sequels of micromercurialism. No significant differences in behavioural and biological risk factors for CVD were found between miners and controls. A weak correlation (r = 0.36, p < 0.01) between systolic blood pressure and average past exposure U-Hg level was found. The mean P-Se in miners (71.4 μg/L) was significantly lower (p < 0.05) than in the controls (77.3 μg/L), while the mean U-Se tended to be higher (p < 0.05) in miners (16.5 μg/g creatinine) than in the controls (14.0 μg/g creatinine). Among antioxidative enzyme activities, only CAT in erythrocytes was significantly higher (p < 0.01) in miners (3.14 MU/g Hb) than in the controls (2.65 MU/g Hb). The mean concentration of B-MEL in miners (44.3 ng/L) was significantly higher (p < 0.01) than in the controls (14.9 ng/L). The mean value of U-MEL sulphate (31.8 μg/L) in miners was significantly lower (p < 0.01) than in the control group (46.9 μg/L). Among the observed lipid peroxidative products, the mean concentration of U-MDA was statistically higher (p < 0.01) in miners (0.21 μmol/mmol creatinine) than in the controls (0.17 μmol/mmol creatinine).

In the group of miners with high mercury accumulation and the presence of some nonspecific symptoms and signs of micromercurialism, the results of our study partly support the assumption that long-term occupational exposure to Hg0 enhances the formation of free radicals even several years after termination of occupational exposure. Therefore, long-term occupational exposure to Hg0 could be one of the risk factors for increased lipid peroxidation and increased mortality due to ischaemic heart disease (ICH) found among the mercury miners of the Idrija Mine.  相似文献   


17.
Species- and tissue-specific defenses against the possibility of oxidative stress and lipid peroxidation were compared in adult fish, Oreochromis niloticus and Cyprinus carpio, exposed to 2,4-dichlorophenoxyacetic acid (2,4-D), azinphosmethyl and their combination for 96 h. Superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activities were monitored in kidney, brain and gill. In all exposure groups there was a marked increase in SOD activity in gill tissues in both fish species, while it was at the control level in other tissues. The highest elevation of SOD activity by combined treatment was observed in C. carpio. Individual and combined treatments caused an elevation in catalase and GPx activities in kidney of C. carpio. Catalase activity was unaffected in brain of O. niloticus, while GPx activity was decreased after all treatments. Glutathione S-transferase (GST) activity was higher than the control levels in kidney of both fish exposed to pesticides. No significant changes were observed in malondialdehyde level in kidney and brain of C. carpio. Our results indicate that the toxicities of azinphosmethyl and 2,4-D may be related to oxidative stress. Also, the results show that SOD activity in gill and GST activity in kidney may be used as biomarkers for pollution monitoring and indicate that the activities of certain biomarkers in C. carpio are more sensitive to pesticides than those in O. niloticus.  相似文献   

18.
Free radical-induced lipid peroxidation has been associated with numerous disease processes including diabetes mellitus. The extent of lipid peroxidation (LPO) and antioxidant defense system [i.e., levels of glutathione (GSH), glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT)] were evaluated in reticulocytes and erythrocytes of type 2 diabetic males and age-matched controls. Type 2 diabetics have shown increased lipid peroxidation and decreased levels of GSH, GR, GPx, G6PDH, and GST both in reticulocytes and erythrocytes compared to controls, indicating the presence of oxidative stress and defective antioxidant systems in these patients. CAT activity is found to be enhanced in both the reticulocytes and erythrocytes of diabetics, with a greater percentage enhancement in reticulocytes. The extent of increase in lipid peroxidation is greater in erythrocytes compared to reticulocytes in these patients. Furthermore, the maturation of reticulocytes to erythrocytes resulted in decreased GSH and decreased activities of all antioxidant enzymes (except CAT) both in normals and type 2 diabetes individuals, indicating decreased scavenging capacity as reticulocytes mature to erythrocytes. These maturational alterations are further intensified in type 2 diabetics. The present study reveals that the alterations in lipid peroxidation and antioxidant system lean toward early senescence of erythrocytes in type 2 diabetic patients.  相似文献   

19.
Oleuropein-rich extracts from olive leaves and their enzymatic and acid hydrolysates, respectively rich in oleuropein aglycone and hydroxytyrosol, were prepared under optimal conditions. The antioxidant activities of these extracts were examined by a series of models in vitro. In this study the lipid-lowering and the antioxidative activities of oleuropein, oleuropein aglycone and hydroxytyrosol-rich extracts in rats fed a cholesterol-rich diet were tested. Wistar rats fed a standard laboratory diet or cholesterol-rich diets for 16 weeks were used. The serum lipid levels, the thiobarbituric acid reactive substances (TBARS) level, as indicator of lipid peroxidation, and the activities of liver antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) were examined. The cholesterol-rich diet induced hyperlipidemia resulting in the elevation of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C). Administration of polyphenol-rich olive leaf extracts significantly lowered the serum levels of TC, TG and LDL-C and increased the serum level of high-density lipoprotein cholesterol (HDL-C). Furthermore, the content of TBARS in liver, heart, kidneys and aorta decreased significantly after oral administration of polyphenol-rich olive leaf extracts compared with those of rats fed a cholesterol-rich diet. In addition, these extracts increased the serum antioxidant potential and the hepatic CAT and SOD activities. These results suggested that the hypocholesterolemic effect of oleuropein, oleuropein aglycone and hydroxytyrosol-rich extracts might be due to their abilities to lower serum TC, TG and LDL-C levels as well as slowing the lipid peroxidation process and enhancing antioxidant enzyme activity.  相似文献   

20.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号