首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsal periaqueductal gray (dPAG) is involved in defensive coping reactions to threatening stimuli. Corticotropin releasing factor (CRF) is substantially implicated as a direct modulator of physiological, endocrine and behavioral responses to a stressor. Previous findings demonstrate a direct role of the central CRF system in dPAG-mediated defensive reactions toward a threatening stimulus. These include anxiogenic behaviors in the elevated plus maze (EPM) in rats and defensive reactions in both the mouse defense test battery (MDTB) and rat exposure test (RET) paradigms in mice. Furthermore, CRF was shown to directly and dose-dependently excite PAG neurons in vitro. The aim of the present series of experiments was to directly evaluate the role of the CRF1 receptor (CRF1) in dPAG-induced defensive behaviors in the MDTB and the RET paradigms. For this purpose, cortagine, a novel CRF1-selective agonist, was directly infused into the dPAG. In the RET the high dose of cortagine (100 ng) significantly affected spatial avoidance measures and robustly increased burying behavior, an established avoidance activity, while having no effects on behaviors in the MDTB. Collectively, these results implicate CRF1 in the dPAG as a mediator of temporally and spatially dependent avoidance in response to controllable and constant stimuli.  相似文献   

2.
A multicompartment chamber was used to study the investigatory behavior of mice in a novel environment. Restraint stress, subcutaneous morphine (1.75 mg/kg), and ICV corticotropin-releasing factor (CRF; 75 ng) each produced a decreased mean time per contact with novel stimuli. The effect of all three treatments was antagonized by a dose of naloxone that by itself had no significant behavioral effects (0.7-0.75 mg/kg). Naloxone alone at a higher dose (1.25 mg/kg), increased the mean time per contact with the stimuli. These results confirm previous reports of the effects of opiates and stress on this behavior in rats. The similarity of the effects of CRF and stress on the behavioral response to this chamber supports the possibility that CRF may act in the central nervous system to mediate certain behavioral responses in stress.  相似文献   

3.
Corticotropin-releasing factor (CRF) administered intracerebroventricularly (ICV) to rats and mice has been shown to elicit a variety of behaviors resembling those that occur in stress. In a novel multicompartment chamber, ICV CRF altered the behaviors in a manner closely resembling that observed following a period of restraint. In particular, 75 ng CRF ICV or 30-40 min restraint markedly reduced the time mice spent in contact with novel stimuli. ICV injections of a peptide antagonist of CRF, alpha-helical CRF9-41 (ahCRF), reversed the effects of restraint on this measure. This effect of ahCRF was dose dependent, with a minimal effective dose of 10 micrograms. Other behavioral measures appeared normal, and ahCRF did not significantly alter the stimulus-contact time in unrestrained mice. These results provide strong evidence to support the hypothesis that endogenous CRF may be a factor affecting stress-induced changes in exploratory behavior in mice.  相似文献   

4.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

5.
CRF-induced excessive grooming behavior in rats and mice   总被引:4,自引:0,他引:4  
We studied the grooming response to lateral ventricle injection of CRF in both rats and mice under similar conditions. One microgram of CRF ICV induced a pronounced increase (3- to 4-fold) in the frequency of self-grooming in rats, but only a much smaller (less than 20%) increase in mice. The minimum effective dose of CRF in rats was 300 ng. Although ACTH1-24 induced less grooming in mice than in rats, the difference in potency did not appear to be sufficient to explain the differences between the effectiveness of CRF in the two species. Whereas ACTH increased all types of grooming scored. CRF increased all forms of grooming except flank scratching with the hind limb. The major effect of CRF was to increase the number of episodes of grooming, whereas ACTH1-24 tended to prolong the length of individual episodes. The excessive grooming induced by ICV CRF was not affected by prior treatment with dexamethasone, suggesting that the increased grooming was not due to secondary release of ACTH from the pituitary. Nevertheless, ICV CRF might induce grooming by releasing MSH/ACTH from cerebral storage sites. CRF-induced grooming, like ACTH-induced grooming, was inhibited by naloxone pretreatment. Despite the small qualitative differences, CRF-induced grooming could be due to secondary release of ACTH.  相似文献   

6.
The teneurin C-terminal associated peptides (TCAP) are a recently discovered family of bioactive peptides that can attenuate aspects of the behavioral stress responses of rats. Because TCAP has some structural similarity to the corticotropin-releasing factor (CRF) family of peptides, and modulates elements of the stress response, TCAP may act to modulate CRF actions in vivo. This hypothesis was tested by investigating anxiety-related behaviors in male rats following repeated intravenous (IV) TCAP-1 administration with either an acute intracerebroventricular (ICV) or IV CRF challenge. TCAP-1 alone did not affect behavioral responses significantly, however did significantly affect CRF-regulated behaviors depending on CRF's mode of injection. In both the elevated plus-maze and the open field tests, TCAP-1 had an anxiolytic effect on ICV CRF responses as indicated by decreased stretched-attend postures in the elevated plus maze (p<0.05), and increased center time and center entries in the open field (p<0.05). However, prior TCAP-1 treatment has an anxiogenic effect on the IV CRF-induced behaviors (decreased center entries and total distance in the open field (p<0.05)). TCAP-1's actions are not mediated through acute changes in glucocorticoid levels and may occur via a central action in the brain. A fluorescently (FITC)-labeled TCAP-1 analog was IV-administered to investigate whether IV TCAP-1 has the potential to regulate central mechanisms by crossing the blood-brain barrier. FITC-TCAP-1 was detected in blood vessels and fibers in the brain indicating that uptake into the brain is a possible route for its interaction with CRF and its receptors. Thus, TCAP may modulate CRF-associated behaviors by a direct action in the CNS.  相似文献   

7.
M Jiménez  L Buéno 《Life sciences》1990,47(3):205-211
The effects of NPY on CRF and stress-stimulated cecal motility were investigated by electromyography in rats. Intracerebroventricular (ICV) injection of NPY at 300 ng/kg significantly reduced the frequency of spike burst during the first 15 minutes after its administration while no effect was observed at a lower dose (150 ng/kg). Exposure to mental stress (MS) increased significantly (p less than 0.01) during 45 minutes, the frequency of cecal spike bursts. NPY (300 ng/kg) injected ICV, 30 minutes prior to MS periods abolished the excitatory effect induced by stress. The frequency of cecal spike bursts was also increased during the first 15-minutes following ICV injection of CRF (300 ng/kg). Prior (5 min) ICV administration of NPY (150 ng/kg) abolished the stimulatory effect of CRF on cecal motility. It is concluded that central administration of NPY suppresses the stress-induced cecal motor response probably by inhibiting the pathways involved in CRF mediation of these effects.  相似文献   

8.
Short-term effects of hypothalamic releasing factors on feeding behavior and digestive motility patterns were assessed in hay-fed sheep trained to eat more than half the total amount eaten over 8 h within the first 3 h after food presentation. Thyrotropin-releasing hormone (TRH) given intracerebroventricularly (ICV, 30 ng/kg) or intravenously at higher doses (IV, 3 micrograms/kg) reduced food consumption by 20 p. cent. The ICV or IV TRH-induced reduction was associated with behavioral excitation and stimulation of antroduodenal motor activity without changes in water intake. The ovine corticotropin releasing factor (oCRF 41) decreased food and water intake by 30-50% when administered ICV (60 ng/kg) but was not active when given systemically at doses up to 6 micrograms/kg. The synthetic human growth hormone releasing factor (hGRF 44) administered centrally (60 ng/kg) increased the amount of food intake and the antral motor activity without behavioral excitation. The results indicate a centrally-mediated facilitation of food intake by GRF and its inhibition by CRF which also affect water consumption. The presence of digestive motor effects suggests that extrapituitary pathways may be involved, as for TRH, in the action of both GRF and CRF.  相似文献   

9.
Synthetic ovine corticotropin-releasing factor (CRF) administered intraventricularly (ICV) to rhesus monkeys resulted in endocrine and behavioral changes. At doses of 20 and 180 micrograms, CRF stimulated the pituitary-adrenal axis in four chair-restrained monkeys. These monkeys showed concomitant increases in arousal. To study these animals in a less restrictive setting, three of the monkeys later received CRF ICV (20 and 180 micrograms) in their home cages. At the 180-micrograms dose the monkeys exhibited a combination of huddling and lying down behavior. These behavioral effects did not seem to be due to alterations in blood pressure.  相似文献   

10.
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

11.
《Hormones and behavior》2008,53(5):600-611
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

12.
Neuropeptides, especially oxytocin (OT) and arginine vasopressin (AVP), have been implicated in several features of monogamy including alloparenting. The purpose of the present study was to examine the role of OT and AVP in alloparental behavior in reproductively na?ve male prairie voles. Males received intracerebroventricular (ICV) injections of artificial cerebrospinal fluid (aCSF), OT, an OT receptor antagonist (OTA), AVP, an AVP receptor antagonist (AVPA), or combinations of OTA and AVPA and were subsequently tested for parental behavior. Approximately 45 min after treatment, animals were tested for behavioral responses to stimulus pups. In a 10-min test, spontaneous alloparental behavior was high in control animals. OT and AVP did not significantly increase the number of males that showed parental behavior, although more subtle behavioral changes were observed. Combined treatment with AVPA and OTA (10 ng each) significantly reduced male parental behavior and increased attacks; following a lower dose (1 ng OTA/1 ng AVPA), males were less likely to display kyphosis and tended to be slower to approach pups than controls. Since treatment with only one antagonist did not interfere with the expression of alloparenting, these results suggest that access to either OT or AVP receptors may be sufficient for the expression of alloparenting.  相似文献   

13.
Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats. Preweaning 14-day-old and postweaning 26-day-old rats were exposed to two age-specific threats, cat odor and an adult male rat. The acute behavioral response was determined during exposure. After exposure, the time courses of the corticosterone response and of CRF expression in the paraventricular nucleus of the hypothalamus (PVN) and in extrahypothalamic areas were assessed. Preweaning rats became immobile when exposed to cat odor or the male rat, whereas postweaning rats became immobile to cat odor only. Male exposure increased serum corticosterone levels in 14-day-old rats, but cat odor failed to increase levels at either age. Exposure induced elevation of CRF mRNA levels in the PVN that paralleled changes in corticosterone levels. CRF may thus play a role in endocrine regulation and its developmental changes during early life. Neither cat odor nor the adult male altered CRF mRNA levels in the bed nucleus of the stria terminalis (BNST) or the amygdala, but both stimuli increased levels in the hippocampus. Hippocampal CRF mRNA expression levels did not parallel cat odor or male-induced immobility, indicating that CRF is not involved in this response in young rats but may be involved in aspects of learning and memory.  相似文献   

14.
Corticotropin releasing factor (CRF) and sauvagine (SVG) when injected ICV both reduced aggressive behavior and sociability while increasing defensive behavior in isolated DBA/2 mice interacting with a group-housed intruder. SVG was more effective than CRF in producing such behavioral effects. These results add further evidence to the similarity between CRF and SVG, and are discussed in terms of the involvement of these peptides in emotional reactivity in the laboratory mouse.  相似文献   

15.
We compared the in vivo efficacy of two selective CRF2 agonists, mouse urocortin II (mUcn II) and human urocortin III (hUcn III), using food intake, anxious behavior, or ACTH release in CD-1 or Balb/c mice as indices of biological stress responses. All three peptides produced anorexia (Minimal Effective Dose (M.E.D.) for CRF and mUcn II = 0.03 nmol; M.E.D. for hUcn III = 0.3 nmol). Only mUcn II and CRF appeared to increase anxious behaviors in the elevated plus maze test (M.E.D. = 0.3 and 0.01 nmol, respectively). CRF increased the release of plasma ACTH (M.E.D. of 0.3 nmol), while mUcn II and hUcn III had no effect on ACTH release. These data suggest that the CRF2 receptor subtype plays a primary role in the activation of behavioral, but not neuroendocrine, stress responses.  相似文献   

16.
Corticotropin-releasing factor (CRF) is both a major regulator of the hypothalamo-pituitary-adrenal (HPA) axis and the activity of the autonomic nervous system. Besides, it exerts numerous effects on other physiological functions such as appetite control, motor and cognitive behavior and immune function. The basis for these effects is constituted by its distribution in hypothalamic and extrahypothalamic brain areas, the latter being represented by limbic structures such as the central nucleus of the amygdala or by brain stem neurons such as the locus coeruleus (LC) or nucleus of the solitary tract (NTS). The effects of CRF are mediated through recently described CRF-receptor subtypes, whose molecular biology, biochemistry and pharmacological regulation are discussed in detail. In the second part of this review, we will focus on the physiology of CRF-systems in the brain, with a particular emphasis on cardiovascular regulation, respiration, appetite control and stress-related behavior. Finally, the role of the locus coeruleus in the control of CRF-mediated behavioral activities is discussed. The interaction of noradrenergic and CRF-neurons clearly implies that CRF appears to directly activate LC neurons in a stressful situation, thus ultimately coordinating the bodily response to a stressful stimulus.  相似文献   

17.
Corticotropin-releasing factor (CRF) and its receptor subtypes have been implicated in the regulation of endocrine, behavioral and autonomic responses to stress, fear and anxiety. Ovine CRF (oCRF) is a nonspecific CRF receptor agonist that produces anxiogenic-like effects when injected locally into the dorsal aspects of the periaqueductal gray (PAG). This structure is subdivided into four distinct longitudinal columns but their exact functional role is not fully understood. The purpose of the present study was to characterize the effects of oCRF (0.25, 0.5 and 1 microg/0.2 microL) injections into the dorsomedial (dmPAG), dorsolateral (dlPAG) and lateral (lPAG) columns of the PAG using an analysis of the exploratory behavior of rats in the elevated plus-maze (EPM) test. The results showed that microinjections of oCRF intra-dmPAG reduced entries and time spent in the open arms and decreased end-arm exploration and head-dipping. In contrast, oCRF intra-dlPAG or lPAG did not affect the exploratory behavior of the animals in the EPM. These findings point to a columnar specificity for the oCRF effects in the PAG, that is, it increased spatial avoidance measures of the EPM test only in the dmPAG. The proaversive effects of oCRF in the dmPAG gain further relevance when combined with previous immunohistochemical studies showing that CRF-containing projections from the periventricular hypothalamic system arch dorsomedially to the PAG, which could function as an important relay station in the midbrain tectum for avoidance behaviors.  相似文献   

18.
Vertebrates and invertebrates show a similar response of rapid anesthesia with high levels of carbon dioxide. In this study, we use crayfish to examine both behavioral and physiological responses to increasing [CO(2)] to explain the rapid unresponsiveness and cessation of an autonomic response. Hypoxic and low pH environments that are induced by CO(2) exposure were also examined, although neither produced the identified CO(2) effects. In insects, low concentrations play a vital role in providing information for task performance such as food location through attraction cues, whereas high concentrations produce avoidance responses. We found behavioral responses in crayfish that demonstrate a strong repellent effect to high [CO(2)] and that the avoidance behavior decreases with lower [CO(2)]. There was not a preference and/or repellent behavioral response with 5% CO(2), hypoxic or low pH environments. Mechanosensory stimulation showed that only at high [CO(2)] there is an unresponsiveness to stimuli within a 30?min time period. Additionally, the autonomic bioindex of heart and ventilatory rates showed a complete cessation with high acute exposure within in the same time period for unresponsiveness to mechanosensory stimulation.  相似文献   

19.
An alarm pheromone released from stressed conspecifics evokes behavioral and autonomic responses in rats. We have previously reported that male Wistar rats show behavioral changes including increased sniffing, walking and rearing, and decreased resting as well as exaggerated response of body temperature to a novel environment [known as stress-induced hyperthermia (SIH)] when they are exposed to an alarm pheromone released from other male rats receiving foot shocks. The purpose of the present study was to examine the role of testosterone in the production and release of the alarm pheromone using these behavioral and autonomic responses in recipient rats. Three groups of alarm pheromone donors were presented, namely, intact males, castrated males, and testosterone-implanted castrated males. The effects of the alarm pheromone on the autonomic responses did not differ among the three groups, regardless of the donor's steroidal milieu, whereas behavioral responses were altered by castrating the donor males and the effects were restored by testosterone implantation. These results suggest that the alarm pheromone released from stressed male rats can be classified into at least two categories according to the androgen dependency of their production and/or release.  相似文献   

20.
Corticotropin releasing factor (CRF) infused bilaterally into the lateral ventricles of awake, chronically cannulated, male Sprague-Dawley rats produced a dose-dependent increase in the in vitro activity of cortical and midbrain tryptophan hydroxylase after 60 min. The maximal increase in enzyme activity of 60% over that of vehicle-treated controls was reached 45 min after an infusion of 3 micrograms CRF. The increase in enzyme activity after a single dose of CRF resembled that seen after exposure of rats to an acute sound stress: it was reversed by preincubation of the enzyme preparation with alkaline phosphatase and was nonadditive with the increase in activity obtained in the presence of phosphorylating conditions. The response to intracerebroventricularly administered CRF was abolished by bilateral adrenalectomy, but restored by repeated daily systemic administration of the synthetic glucocorticoid, dexamethasone (500 micrograms/day, i.p. for 3 days), to the adrenalectomized rats. Intracerebroventricular administration of the glucocorticoid antagonist, RU 38486 (200 micrograms/day for 4 days), also blocked the acute increase in tryptophan hydroxylase activity in response to CRF. Finally, bilateral lesions to the central nucleus of the amygdala, a region involved in mediating behavioral, endocrine and autonomic responses to stressful stimuli, abolished the increase in enzyme activity in response to intraventricular CRF. The glucocorticoid sensitivity of the response to CRF, as well as the involvement of the central nucleus of the amygdala support the view that CRF may have a role in mediating the enhancement of tryptophan hydroxylase activity by acute sound stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号