首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fåhraeus R  Lane DP 《The EMBO journal》1999,18(8):2106-2118
Expression of full-length p16(INK4a) blocks alphavbeta3 integrin-dependent cell spreading on vitronectin but not collagen IV. Similarly, G1-associated cell cycle kinases (CDK) inhibitory (CKI) synthetic peptides derived from p16(INK4a), p18(INK4c) and p21(Cip1/Waf1), which can be delivered directly into cells from the tissue culture medium, do not affect non-alphavbeta3-dependent spreading on collagen IV, laminin and fibronectin at concentrations that inhibit cell cycle progression in late G1. The alphavbeta3 heterodimer remains intact after CKI peptide treatment but is immediately dissociated from the focal adhesion contacts. Treatment with phorbol 12-myristate 13-acetate (PMA) allows alphavbeta3 to locate to the focal adhesion contacts and the cells to spread on vitronectin in the presence of CKI peptides. The cdk6 protein is found to suppress p16(INK4a)-mediated inhibition of spreading and is also shown to localize to the ruffling edge of spreading cells, indicating a function for cdk6 in controlling matrix-dependent cell spreading. These results demonstrate a novel G1 CDK-associated integrin regulatory pathway that acts upstream of alphavbeta3-dependent activation of PKC as well as a novel function for the p16(INK4a) tumour suppressor protein in regulating matrix-dependent cell migration.  相似文献   

2.
抑制P18^INK4C表达对胃腺癌细胞侵袭的影响   总被引:2,自引:0,他引:2  
应用基因芯片技术筛选胃腺癌转移相关基因的过程中 ,发现CDK抑制因子 (CKI)P18INK4C在人类胃腺癌转移细胞株RF 4 8中的表达 ,较其原发灶细胞株RF 1明显下调。这提示 ,P18INK4C表达差异与胃腺癌细胞的侵袭转移 ,可能有一定程度的相关性。为此 ,通过反义RNA技术抑制在RF 1中的表达 ,研究其对胃腺癌原发灶细胞体外运动、侵袭转移能力以及生长特性的影响 ,进一步明确P18INK4C与人类胃腺癌侵袭转移之间的关系。结果发现 ,抑制P18INK4C的表达 ,可以使胃腺癌原发灶细胞的体外侵袭能力明显增加 ,抑制前RF 1细胞的体外侵袭能力仅为抑制后的 4 4 %。然而 ,RF 1的细胞周期和生长增殖能力 ,并未因为P18INK4C表达的改变而受到影响。上述结果提示 ,P18INK4C参与人类胃腺癌转移过程 ;在此过程中 ,其主要的作用可能并不是调节细胞周期 ,而是与胃腺癌原发灶细胞侵袭转移能力的调节密切相关。  相似文献   

3.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

4.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

5.
Self-renewal is a feature common to both adult and embryonic stem (ES) cells, as well as tumor stem cells (TSCs). The cyclin-dependent kinase inhibitor, p18INK4c, is a known tumor suppressor that can inhibit self-renewal of tumor cells or adult stem cells. Here, we demonstrate an opposite effect of p18 on ES cells in comparison with teratoma cells. Our results unexpectedly showed that overexpression of p18 accelerated the growth of mouse ES cells and embryonic bodies (EB); on the contrary, inhibited the growth of late stage teratoma. Up-regulation of ES cell markers (i.e., Oct4, Nanog, Sox2, and Rex1) were detected in both ES and EB cells, while concomitant down-regulation of various differentiation markers was observed in EB cells. These results demonstrate that p18 has an opposite effect on ES cells as compared with tumor cells and adult stem cells. Mechanistically, expression of CDK4 was significantly increased with overexpression of p18 in ES cells, likely leading to a release of CDK2 from the inhibition by p21 and p27. As a result, self-renewal of ES cells was enhanced. Our current study suggests that targeting p18 in different cell types may yield different outcomes, thereby having implications for therapeutic manipulations of cell cycle machinery in stem cells.  相似文献   

6.
在应用基因芯片技术筛选胃腺癌转移相关基因的过程中 ,发现CDK抑制因子P18INK4C在人类胃腺癌转移细胞株RF 4 8中的表达较其原发灶细胞株RF 1明显下调 .这提示P18INK4C表达差异与胃腺癌细胞的侵袭转移可能有一定程度的相关性 .通过构建P18INK4C 表达质粒并将其转染入RF 4 8增强P18INK4C的表达 ,研究其对胃腺癌原发灶细胞体外运动、侵袭转移能力以及生长特性的影响 ,进一步明确P18INK4C与人类胃腺癌侵袭转移之间的关系 .结果发现 ,增强P18INK4C表达可以使胃腺癌原发灶细胞的体外侵袭能力明显下降 ,而对RF 4 8的细胞周期和生长增殖能并力未产生影响 .上述结果提示 ,P18INK4C参与人类胃腺癌转移过程 ,在此过程中其主要的作用可能并不是调节细胞周期 ,而是与胃腺癌原发灶细胞侵袭转移能力的调节密切相关 .  相似文献   

7.
Differentiation pathways of ectodermal epithelial cells in hydra   总被引:5,自引:0,他引:5  
The differentiation pathways of ectodermal epithelial cells in hydra were investigated. We found that under steady state conditions the ectodermal epithelial cells of the foot, the foot mucous cells, and the ectodermal epithelial cells of the tentacles, the battery cells, differentiate from gastric ectodermal ephithelial stem cells. From stem cell to the terminally differentiated state, a single cell cycle is required. The cells undergo a final round of DNA replication, double their genome to 4 n and become arrested in the G2-phase of the cell cycle. The ectodermal ephithelial cells of the hypostome, which like the tentacle cells are part of the head structure, can also arise from gastric ectodermal epithelial stem cells, but do so only during head regeneration and budding. They differentiate from stem cell to hypostomal cell in a single cell cycle, but in contrast to foot mucous and battery cells they remain capable of cell proliferation. Due to this self-renewal potential, they do not require recruitment from the gastric stem-cell pool in steady-state animals.  相似文献   

8.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

9.
The effect of exposure to 50 Hz, 1 mT magnetic fields (MF) on the cell cycle in general, on the DNA synthesis in S-phase, and on the G1-phase regulating proteins Cdk4, cyclin D1, p16INK4a, and p21CIP1 was investigated in human amniotic fluid cells. The BrdU-incorporation assay revealed a significant diminution of S-phase cells in MF-exposed cultures. The protein level of Cdk4 did not change, but MF induced a decreased expression of cyclin D1 after 24 h and 30 h exposures. The level of p16INK4a increased at 1 h and 12 h after exposure, whereas the expression of p21CIP1 was enhanced at 6 h and 12 h after exposure. Reduced levels of both Cdk inhibitors were observed at longer exposure times (24 h, 30 h). Our results suggest an inhibitory effect of MF on the G1-phase induced by altered expression of p16INK4a and p21CIP1.  相似文献   

10.
The inhibitors of cyclin-dependent kinase (CDK) 4 (INK4) bind CDK4/6 to prevent their association with D-cyclins and G(1) cell cycle initiation and progression. We report here that among the seven CDK inhibitors, p18(INK4c) played an important role in modulating TCR-mediated T cell proliferation. Loss of p18(INK4c) in T cells led to hyperproliferation in response to CD3 stimulation. p18(INK4c)-null mice developed lymphoproliferative disorder and T cell lymphomas. Expression of IL-2, IL-2R-alpha, and the major G(1) cell cycle regulatory proteins was not altered in p18-null T cells. Both FK506 and rapamycin efficiently inhibited proliferation of p18-null T cells. In activated T cells, p18(INK4c) remained constant, and preferentially associated with and inhibited CDK6 but not CDK4. We propose that p18(INK4c) sets an inhibitory threshold in T cells and one function of CD28 costimulation is to counteract the p18(INK4c) inhibitory activity on CDK6-cyclin D complexes. The p18(INK4c) protein may provide a novel target to modulate T cell immunity.  相似文献   

11.
12.
p16(INK4a), p15(INK4b), p18(INK4c) and p19(INK4d) comprise a family of cyclin-dependent kinase inhibitors and tumor suppressors. We report that the INK4 proteins share the ability to arrest cells in G1, and interact with CDK4 or CDK6 with similar avidity. In contrast, only p18 and particularly p19 are phosphorylated in vivo, and each of the human INK4 proteins shows unique expression patterns dependent on cell and tissue type, and differentiation stage. Thus, the INK4 proteins harbor redundant as well as non-overlapping properties, suggesting distinct regulatory modes, and diverse roles for the individual INK4 family members in cell cycle control, cellular differentiation, and multistep oncogenesis.  相似文献   

13.
14.
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met5]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF–OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16INK4a protein expression and p21WAF1/CIP1 protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16INK4a or p21WAF1/CIP1 activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16INK4a and p21WAF1/CIP1. Collectively, these results indicate that both p16INK4a and p21WAF1/CIP1 are required for the OGF–OGFr axis to inhibit cell proliferation in normal cells.  相似文献   

15.
16.
17.
Sle2c1 is an NZM2410- and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(INK4c) (p18), as the top candidate gene for inducing the Slec2c1-associated expansion of B1a cells. A novel single nucleotide polymorphism in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and peritoneal cavity B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of peritoneal cavity B1a cells. As the cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal and that its impaired expression leads to an accumulation of these cells with high autoreactive potential.  相似文献   

18.
19.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

20.
p18(INK4c) is a member of the INK4 family of proteins that regulate the G(1) to S cell cycle transition by binding to and inhibiting the pRb kinase activity of cyclin-dependent kinases 4 and 6. The p16(INK4a) member of the INK4 protein family is altered in a variety of cancers and structure-function studies of the INK4 proteins reveal that the vast majority of missense tumor-derived p16(INK4a) mutations reduce protein thermodynamic stability. Based on this observation, we used p18(INK4c) as a model to test the proposal that INK4 proteins with increased stability might have enhanced cell cycle inhibitory activity. Structure-based mutagenesis was used to prepare p18(INK4c) mutant proteins with a predicted increase in stability. Using this approach, we report the generation of three mutant p18(INK4C) proteins, F71N, F82Q, and F92N, with increased stability toward thermal denaturation of which the F71N mutant also showed an increased stability to chemical denaturation. The x-ray crystal structures of the F71N, F82Q, and F92N p18INK4C mutant proteins were determined to reveal the structural basis for their increased stability properties. Significantly, the F71N mutant also showed enhanced CDK6 interaction and cell cycle inhibitory activity in vivo, as measured using co-immunoprecipitation and transient transfection assays, respectively. These studies show that a structure-based approach to increase the thermodynamic stability of INK4 proteins can be exploited to prepare more biologically active molecules with potential applications for the development of molecules to treat p16(INK4a)-mediated cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号