首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In women, calcium excretion in the urine rises after menopause and falls with estrogen replacement therapy. The amount of calcium lost in the urine following estrogen therapy is less than should occur based on changes in serum calcium and the amount of calcium filtered by the kidney. This suggests there may be a direct effect of estrogen therapy to increase renal calcium reabsorption. Calbindin D28k is a putative calcium ferry protein located in the distal renal tubules which has been shown to increase transcellular calcium transport. We proposed that estrogen loss after menopause may diminish gene expression of renal calbindin D28k and subsequently diminish renal calcium reabsorption. We used the ovariectomized rat model of estrogen deficiency to investigate changes at the messenger RNA level of calbindin D28k in ovariectomized rats (OVX), sham ovariectomized rats (S-OVX), and estrogen treated ovariectomized rats (E-OVX). We have demonstrated that ovariectomy in rats diminishes the gene expression of renal calbindin D28k. The mRNA levels were approximately three times lower in OVX rats than S-OVX rats. Administration of 17β estradiol to OVX rats produced a significant increase in mRNA level to greater than the S-OVX rats by 4 h. Measurement of serum 1,25 dihydroxyvitamin D3 showed lower level in OVX rats than S-OVX rats but no significant change in E-OVX animals. In conclusion, our results indicate that estrogen increases renal calbindin D28k mRNA levels, by a mechanism independent of changes in 1,25 dihydroxyvitamin D3. This may result in increased expression of calbindin D28k protein which may have a role in reducing renal calcium excretion. J. Cell. Biochem. 65:340–348. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Regulation of cellular Ca(2+) cycling is central to myocardial contractile function. Loss of Ca(2+) regulation is associated with cardiac dysfunction and pathology. Estrogen has been shown to modify contractile function and to confer cardioprotection. Therefore, we investigated the effect of estrogen on expression of rat heart myocardial Ca(2+)-handling proteins and beta-adrenergic receptor (beta(1)-AR) and examined functional correlates. Female rats were sham-operated (SHAM) or ovariectomized. Two weeks after ovariectomy rats were injected (i.p.) daily with estradiol benozoate (OVX+EB) or sesame oil (OVX) for 2 weeks. Protein abundance was measured by immunoblotting and mRNA was quantified by real-time RT-PCR. OVX significantly decreased estrogen and progesterone levels and EB replacement returned both estrogen and progesterone to physiological levels. OVX induced a 75% reduction of uterine weight and a gain in body weight. Replacement restored weights to SHAM level. OVX increased and estrogen-replacement normalized abundance of beta(1)-AR and L-type Ca(2+) channel (Cav1.2) protein. OVX decreased sodium-Ca(2+) exchange protein (NCX) and estrogen restored protein abundance to SHAM levels. Sarcoplasmic reticular ATPase (SERCA), phospholamban (PLB), and ryanodine receptor (RyR) abundance was not altered by hormone status. Levels of mRNA encoding for beta(1)-AR, Cav1.2, and NCX were not influenced by OVX or estrogen replacement. OVX had no effect on SERCA and PLB mRNA level but estrogen replacement elicited a significant increase compared to OVX and SHAM. Estrogen-dependent changes in Ca(2+)-handling proteins and beta(1)-AR are theoretically consistent reduced myocellular Ca(2+) load. However, hormone-dependent alterations in protein were not associated with changes in contractile function.  相似文献   

3.
The aim of the present study was to test the hypothesis that the decreased renal tubular reabsorption of calcium observed in estrogen deficiency is associated with a local regulation of either PTHrP or PTH/PTHrP receptor genes in the kidney. Rats were randomly sham-operated (S) or ovariectomized receiving either vehicule (OVX) or 4 μg E2/kg/day (OVX+E4) or 40 μg E2/kg/d (OVX+E40) during 14 days using alzet minipumps. Plasma PTH and calcium levels were lower in untreated OVX animals than in all other groups (P < 0.01). Plasma PTH was higher in OVX+E40 than in OVX+E4 (P < 0.05). PTHrP mRNA expression in the kidney was unaffected by ovariectomy but was increased in OVX+E40 (0.984 ± 0.452 for PTHrP/GAPDH mRNAs expression vs. 0.213 ± 0.078 in sham, P < 0.01). PTH/PTHrP receptor mRNA expression and the cAMP response of renal membranes to PTH were unaffected by ovariectomy and estrogen substitution. In conclusion, renal PTHrP and PTH/PTHrP receptor mRNAs are not modified by ovariectomy. However, 17β-estradiol increases renal expression of PTHrP mRNA without evident changes in its receptor expression and function. This may help to explain the pharmacological action of estrogen in the kidney, especially how it prevents the renal leak of calcium in postmenopausal women. J. Cell. Biochem. 70:84–93, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Osteoporosis associated with estrogen deficiency is defined as an abnormal decrease in bone mass leading to an increased fracture risk. Genistein (GEN), as a phytoestrogen, is a type of soybean-derived isoflavone that possesses structural similarity to estrogen. In this study, we assessed the effect of GEN in ovariectomized (OVX) mice. To determine the effect of GEN on bone metabolism, we investigated gene expression profiles using a radioactive cDNA microarray. Eight-week-old female mice were either sham operated (SHAM) or OVX. From 1 week after the operation, OVX mice were injected daily with intraperitoneal GEN (0.1, 0.5, 1.5 and 3.0 mg/day) or 17beta-estradiol (E2, 0.03 microg/day) for 4 weeks. A cDNA microarray was used to evaluate changes in the expression of 1,152 genes. OVX mice showed bone mineral density (BMD) loss versus SHAM mice (5.8+/-0.4 vs. 6.9+/-0.6 mg/cm2). However, femur BMDs were completely restored by GEN and by E2 administration in OVX mice. Serum osteocalcin in OVX mice treated with 0.5 mg/day of GEN was 1.6-fold (44.30+/-5.73 ng/ml) higher than that in untreated mice. GEN treatment up-regulated 38 genes (e.g., mitogen-activated protein kinase 10) and down-regulated 18 (e.g., matrix metalloproteinase 13). Moreover, GEN was found to have a protective effect on bone loss caused by estrogen deficiency in OVX mice. The present study suggests that GEN modulates bone metabolism-related gene expression, including calciotropic receptor, cytokines, growth factors and bone matrix proteins.  相似文献   

5.
The effects of ovariectomy (OVX) and estrogen substitution on body weight, body composition, food intake, weight gain, and expression of uncoupling proteins (UCPs) in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle were studied in four groups of rats: (1) Sham-operated rats (N = 8), (2) ovariectomized rats (OVX - E) (N = 8), (3) estrogen-treated OVX rats (OVX + E) (N = 8), and (4) OVX rats on energy restriction (OVX - E + D) (N = 8). OVX was associated with an increase in food intake and body weight gain during a 5-week study period compared to sham-operated rats. The estrogen-substituted rats had a significantly lower food intake and weight gain during the 5 weeks compared to the sham-operated group. However, we also included a nontreated OVX group that was allowed to eat only enough chow to match the weight gain of the sham-operated group. To match the weight gain in the two groups, the OVX group had to consume 16% less chow than the sham-operated group. In BAT, the UCP1 expression was significantly lower in estrogen-deficient rats compared to either intact rats or estrogen-substituted rats, whereas UCP2 and UCP3 mRNA expression was similar in BAT from all four groups. In WAT, both estrogen-deficient groups had significantly lower UCP2 mRNA expression compared to the control rats and estrogen-treated rats; In contrast, the UCP3 mRNA expression in WAT was similar in all four groups. Finally, in skeletal muscle the OVX group on mild energy restriction had reduced UCP3 mRNA expression compared to control, OVX, and estrogen-treated rats. In contrast, the UCP2 mRNA expression in skeletal muscle was similar in all four groups. Thus, the findings that estrogen deficiency is followed by reduced UCP1 expression in BAT and reduced UCP2 expression in WAT in association with weight gain probably caused by a decrease in energy expenditure might indicate that UCPs play a role for the estrogen-mediated changes in body weight and energy expenditure.  相似文献   

6.
Tan Z  Wang TH  Yang D  Fu XD  Pan JY 《Life sciences》2003,73(21):2665-2674
In order to clarify the mechanism underlying the possible preventive effect of estrogen on atherogenesis, we investigated the role of 17beta-estradiol (E2) in the regulation of endothelin-1 (ET-1) production in ovariectomized rats, which may contribute to atherogenesis. Female Spragure-Dawly rats were randomly divided into three groups: sham-operated group (sham), ovariectomized group (OVX) and 17beta-estradiol replacement group (OVX + E2, 20 microg(-1).kg.d(-1),s.c.). 4 weeks after operation, the plasma concentration of ET-1, clearance of ET-1, functional ECE activity and preproET-1 mRNA expression in aorta were measured. Concentration of plasma ET-1 change from 107.8 +/- 18.3 pg/ml (sham) and 135.5 +/- 27.6 pg/ml (OVX + E2) to 190.7 +/- 25.5 pg/ml (OVX ) (n = 8, p < 0.05). There was no significant difference in the clearance of 125IET-1 among three groups (p > 0.05). Functional ECE activity was increased in OVX group in comparison to that in sham group (p < 0.05). The OVX increased the preproET-1 mRNA expression in sham, whereas treatment with estrogen reversed these changes (p < 0.05). The present study have shown that estrogen down-regulates plasma ET-1 levels by inhibiting the preproET-1 mRNA expression and functional ECE activity. Clearance of ET-1 was not affected. Inhibition of ET-1 production mediated by modulating ECE activity may be one of the novel mechanisms of the protective of estrogens on the cardiovascular system.  相似文献   

7.
8.
Previous work showed that estrogen replacement attenuates muscle growth in immature rats. The present study examined muscle insulin-like growth factor-1 (IGF-1) and myostatin expression to determine whether these growth regulators might be involved in mediating estrogen's effects on muscle growth. IGF-1 and myostatin message and protein expression in selected skeletal muscles from 7-week-old sham-ovariectomized (SHAM) and ovariectomized rats that received continuous estrogen (OVX/E2) or solvent vehicle (OVX/CO) from an implant for 1 week or 5 weeks was measured. In the 1-week study, ovariectomy increased IGF-1 mRNA expression in fast extensor digitorum longus and gastrocnemius muscles; the increase was reversed by estrogen replacement. A similar trend was observed in the slow soleus muscle, although the change was not statistically significant. In contrast to mRNA, muscle IGF-1 protein expression was not different between SHAM and OVX/ CO animals in the 1-week study. One week of estrogen replacement significantly decreased IGF-1 protein level in all muscles examined. Myostatin mRNA expression was not different among the 1-week treatment groups. One week of estrogen replacement significantly increased myostatin protein in the slow soleus muscle but not the fast extensor digitorum longus and gastrocnemius muscles. There was no treatment effect on IGF-1 and myostatin expression in the 5-week study; this finding suggested a transient estrogen effect or upregulation of a compensatory mechanism to counteract the estrogen effect observed at the earlier time point. This investigation is the first to explore ovariectomy and estrogen effects on skeletal muscle IGF-1 and myostatin expression. Results suggest that reduced levels of muscle IGF-1 protein may mediate estrogen's effect on growth in immature, ovariectomized rats. Increased levels of muscle myostatin protein may also have a role in mediating estrogen's effects on growth in slow but not fast skeletal muscle.  相似文献   

9.
Sexual dimorphism has been previously found both in mitochondrial biogenesis and function and in adiponectin expression of retroperitoneal WAT. However, little is known about the E2 effects on WAT mitochondrial function. Accordingly, the aim of this study was to examine in greater depth the role of estrogens in sexual dimorphism. This was accomplished by studying the effects of ovariectomy and E2 replacement on retroperitoneal WAT mitochondrial function. Fourteen-week-old female and ovariectomized (OVX) female Wistar rats were used in this study. The ovariectomy was performed at 5 weeks of age and at 10 weeks of age OVX rats were divided into two experimental groups: OVX, and OVX treated with 17β-estradiol (E2) (OVX+E2). Subcutaneous injections of E2 (10 μg/kg/48 h) were administered to the OVX+E2 rats for 4 weeks previous to the sacrifice whereas OVX rats were treated only with the vehicle. Levels of the main markers for mitochondrial biogenesis and function and those representatives of the antioxidant defense system and insulin sensitivity were determined. Additionally, the mRNA levels of the α and β estrogen receptors and of some adipocyte differentiation markers were studied. Our results indicate that retroperitoneal WAT was able to adapt itself to ovariectomy without any changes in mitochondrial function markers or for the adiponectin levels. However, E2 supplementation led to an unexpected decrease in: TFAM protein levels, in LPL, PPARγ and adiponectin gene expression and in the systemic HMW adiponectin levels. This decrease is probably due to the down-regulation of the ERα mRNA expression to avoid an over-stimulation by E2.  相似文献   

10.
针刺对去卵巢大鼠脑内胆碱乙酰转移酶基因表达的影响   总被引:3,自引:0,他引:3  
Tian SJ  Yin L  Sun JP  Tian QH  Zu YQ  Zheng Y  Li Y  Li YR 《生理学报》2004,56(4):498-502
本工作旨在探讨雌激素对脑内乙酰胆碱生成的影响和电针刺激“足三里”穴对去卵巢大鼠脑内乙酰胆碱生成的调整作用。实验选用成年Wistar雌性大鼠,将动物分为正常对照组(INT)、去卵巢组(OVX)和去卵巢针刺组(OVX AC)。用放射免疫分析方法测定血中雌二醇含量,采用RT-PCR方法获得大鼠脑内胆碱乙酰转移酶(ChAT)mRNA的逆转录表达产物——cDNA,用琼脂糖凝胶电泳方法检测,并通过原位杂交方法观察海马ChAT mRNA阳性神经元的表达,然后用计算机图像分析系统进行统计分析。实验结果显示:去卵巢组大鼠体内雌激素水平明显降低,脑内ChAT mRNA的RT-PCR产物和海马ChAT mRNA阳性表达产物的平均面积、平均积分光度值均明显减少,与对照组和针刺组比较有显著性差异;去卵巢针刺“足三里”穴组与去卵巢组相比,大鼠血中雌激素水平明显升高,脑内ChAT mRNA RT-PCR产物明显增多,海马的ChAT mRNA表达阳性神经元增多。以上结果提示:脑内ChAT基因表达与体内雌激素水平有密切关系,去卵巢后针刺“足三里”穴对ChAT的调节作用可能是针刺增强脑内乙酰胆碱含量的机制之一。  相似文献   

11.
Menopause is associated with increased adiposity and greater risk of metabolic disease. In the ovariectomized (OVX) rodent model of menopause, increased adiposity is prevented by estrogen (E2) replacement, reflecting both anorexigenic and potentially metabolic actions of E2. To elucidate metabolic and molecular mechanisms by which E2 regulates fat storage and fat mobilization independently of reduced energy intake, C57 BL/6 mice were ovariectomized, randomized to estrogen (OVX-E2) or control pellet implants (OVX-C), and pairfed for 40 days. E2 treatment was associated with reduced adipose mass and adipocyte size and down-regulation of lipogenic genes in adipocytes under the control of sterol-regulatory element-binding protein 1c. Adipocytes of OVX-E2 mice contained >3-fold more perilipin protein than adipocytes of pairfed control (OVX) mice, and this difference was associated with enhanced ex vivo lipolytic response to catecholamines and with greater levels of serum-free fatty acids following fasting. As in adipose tissue, E2 decreased the expression of lipogenic genes in liver and skeletal muscle. In the latter, E2 appears to promote the partitioning of free fatty acids toward oxidation and away from triglyceride storage by up-regulating the expression of peroxisome proliferation activator receptor-delta and its downstream targets and also by directly and rapidly activating AMP-activated protein kinase. Thus, novel genomic and non-genomic actions of E2 promote leanness in OVX mice independently of reduced energy intake.  相似文献   

12.
Estrogen has diverse effects on the vasculature, such as vasodilation, endothelial growth and inhibition of vascular smooth muscle cell (VSMC) proliferation and migration. However, little is known about the genes that are regulated by estrogen in the vascular wall. Wistar rats were ovariectomized or sham-operated (Sham group), and 2 weeks after the operation, were subjected to subcutaneous implantation of placebo pellets (OVX + V group) or estradiol pellets (OVX + E group). Endothelium-denuded aortic tissue was examined 2 weeks after implantation. By applying high-density oligonucleotide microarray analysis, the expression of approximately 7000 genes was analyzed. Among the genes with different expression levels between the OVX + E group and the OVX + V group, those that have been reported to be expressed in the vasculature or muscle tissue, were chosen. Finally, four genes, caveolin-1, two LIM proteins (enigma and SmLIM) and Id3a, were identified. Microarray as well as real-time polymerase chain reaction showed that the expression levels of these genes were significantly higher in the OVX + E group than in the OVX + V group. To clarify whether estrogen directly upregulates these genes in the vascular wall, Northern blot analysis was performed using cultured rat VSMC. Addition of 100 nmol/L estradiol for 24 hours increased the mRNA levels of all four genes. Although the precise mechanism remains unclear, regulation of these genes by estrogen might contribute to its effect on VSMC.  相似文献   

13.
30 female SD rats (3 months old) are equally divided into three groups: ovariectomy (OVX) rats, sham-operated (SHO) rats and 17 beta estradiol (E2) treated OVX rats. For each group, mRNA was isolated from long bone at one month and three months after surgery, respectively. mRNA was reverse transcribed into single strand cDNA and then used as a probe hybridizing to the DNA fragments of col I alpha(1), col I alpha(2), col III, col V, fibronectin, IL-1, IL-6, TGF-beta, LIF, TNF-alpha, TNF-beta by reverse northern and dot blot hybrization. The housekeeping gene, gapdh, was used as an internal control. The results show that in bone of rat, the stable expression of col I alpha (1), col I alpha(2) and col III are related to age not ovariectomy, while supplement with E2 can inhibit the expression of col III and col I alpha(2) completely. The expression of col V, IL-1, IL-6 can be inhibited by estrogen and recovered by removal of estrogen by OVX, then addition of E2 decreased it to the normal level. The expression of TGF-beta is also inhibited by estrogen. It increased during one month after overiectomy, and partially decreased in E2 complemented rat. Three months after surgery, the level of increasing and decreasing is less evident as two months ago. It seems that in young SD rat, the expression of TGF-beta is related to both estrogen and age.  相似文献   

14.
In rodents, the steroid hormone estrogen (E) profoundly influences the early events in the uterus leading to embryo implantation. It is thought that E triggers the expression of a unique set of genes in the endometrium that in turn control implantation. To identify these E-induced genes, we employed a delayed implantation model system in which embryo attachment to rat endometrium is dependent upon E administration. Using a gene expression screen method, we isolated a number of cDNAs representing mRNAs whose expression is either turned on or turned off in response to an implantation-inducing dose of E. We identified one of these cDNAs as that encoding secretory leukocyte protease inhibitor (SLPI), an inhibitor of serine proteases. The expression of SLPI mRNA was induced in the uteri of ovariectomized rats in response to E, confirming the hormonal regulation of this molecule. Spatiotemporal analysis revealed a biphasic pattern of expression of SLPI mRNA during early pregnancy. A considerable amount of SLPI mRNA was detected in the uterine epithelium on Day 1 of pregnancy. The level of this mRNA, however, declined sharply on Days 2 and 3 of gestation. Interestingly, on Day 4 of gestation, there was a marked resurgence in SLPI mRNA expression in the uterine epithelium. This second burst of SLPI expression diminished by Day 6 of pregnancy. The transient induction of SLPI mRNA during Days 4 and 5 overlapped with the window of implantation in the rat. Although the precise function of SLPI in the uterus eludes us presently, its known effects as a serine protease inhibitor in other tissues and its hormone-induced expression in the rat uterus immediately preceding implantation lead us to propose that this gene plays an important role in controlling excessive proteolysis and inflammation during a critical phase of early pregnancy.  相似文献   

15.
In this study, we compared endothelial nitric oxide synthase (eNOS)-mediated cerebral vasodilating responses in intact female rats, chronically ovariectomized (OVX) rats, and OVX rats treated for 2 weeks with 17beta-estradiol (E(2)). Under anesthesia, using intravital microscopy and a closed cranial window system, pial arteriolar diameter changes were monitored during sequential cortical suffusions of an eNOS-dependent dilator [acetylcholine (ACh)] and a direct NO donor [S-nitrosoacetylpenicillamine (SNAP)]. In separate rats from the same groups, we compared eNOS and caveolin-1 (CAV-1) protein abundance in pial arterioles (via immunofluorescence analyses). In untreated and low-dose E(2)-treated (1.0 microg x kg(-1) x day(-1)) OVX rats, ACh-induced vasodilations were virtually absent. High-dose E(2) treatment (100 microg x kg(-1) x day(-1)) restored ACh-induced pial arteriolar dilations to levels seen in intact females. The vasodilations elicited by SNAP and ADO were unaffected by chronic estrogen changes, indicating no direct estrogen influence on vascular smooth muscle (VSM) reactivity. Pial arteriolar eNOS protein abundance was diminished by ovariectomy and restored by high-dose E(2) treatment. Pial arteriolar CAV-1 expression was higher in OVX versus intact and E(2)-treated OVX females. These results suggest that long-term changes in estrogen directly influence brain eNOS functional activity. The estrogen-related changes in eNOS-dependent vasodilating function appear to be related, in part, to a capacity for E(2) to increase eNOS protein expression and, in part, to an E(2)-associated diminution in endothelial CAV-1 expression.  相似文献   

16.
Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARδ expression in vivo, and transgenic mice overexpressing muscle-specific PPARδ are reportedly protected from diet-induced obesity. We thus hypothesized that obesity observed in ovariectomized mice, a model of menopause, may result in part from abrogated expression of muscle PPARδ and/or downstream mediators such as FoxO1. To test this hypothesis, we ovariectomized (OVX) or sham-ovariectomized (SHM) 10-week old female C57Bl/6J mice, and subsequently harvested quadriceps muscles 12 weeks later for gene expression studies. Compared to SHM, muscle from OVX mice displayed significantly decreased expression of PPARδ (3.4-fold), FoxO1 (4.5-fold), PDK-4 (2.3-fold), and UCP-2 (1.8-fold). Consistent with studies indicating PPARδ and FoxO1 regulate muscle fiber type, we observed dramatic OVX-specific decreases in slow isoforms of the contractile proteins myosin light chain (11.1-fold) and troponin C (11.8-fold). In addition, muscles from OVX mice expressed 57% less myogenin (drives type I fiber formation), 2-fold more MyoD (drives type II fiber formation), and 1.6-fold less musclin (produced exclusively by type II fibers) than SHM, collectively suggesting a shift towards less type I oxidative fibers. Finally, and consistent with changes in PPARδ and FoxO1 activity, we observed decreased expression of atrogin-1 (2.3-fold) and MuRF-1 (1.9-fold) in OVX mice. In conclusion, muscles from ovariectomized mice display decreased PPARδ and FoxO1 expression, abrogated expression of downstream targets involved in lipid and protein metabolism, and gene expression profiles indicating less type I oxidative fibers.  相似文献   

17.
Aging and estrogen deficiency increase the risk for developing cardiovascular disease (CVD). Oxidative stress has also been implicated in the pathophysiology of CVD and in ischemia-reperfusion (I/R) injury. We tested the hypothesis that chronic in vivo estrogen treatment or superoxide inhibition with the SOD mimetic EUK-8 improves cardiac functional recovery after I/R in the aged female rat. Sprague-Dawley rats (12-14 mo) were used as follows: intact (n = 6), ovariectomized + placebo (OVX, n = 6), OVX + EUK-8 (EUK-8, 3 mg/kg, n = 6), and OVX + estrogen (1.5 mg/pellet, 60 days release, n = 6). Perfused isolated hearts were subjected to global ischemia (25 min) followed by reperfusion (40 min). Functional recovery after I/R and myocardial protein expression of NADPH oxidase (p22, p67, and gp91(phox)), inducible nitric oxide synthase (NOS), endothelial NOS, and SOD1, as well as nitrotyrosine levels (as a marker for peroxynitrite), were assessed. Compared with OVX, EUK-8 and estrogen markedly improved functional recovery after I/R, which was associated with a decrease in NADPH oxidase expression and nitrotyrosine staining. However, estrogen increased inducible NOS expression, whereas EUK-8 had little effect. There were no significant changes in endothelial NOS and SOD1 expression among the groups. These results indicate that EUK-8 and estrogen improved cardiac recovery after I/R. Given the controversy surrounding hormone replacement therapy, EUK-8 may be an alternative to estrogen in protecting those at risk for myocardial ischemia in the aging population.  相似文献   

18.

Background  

Administration of a single physiological dose of 17beta-estradiol (E2:40 microg/kg) to the ovariectomized immature rat rapidly induces uterine growth and remodeling. The response is characterized by changes in endometrial stromal architecture during an inflammatory-like response that likely involves activated matrix-metalloproteinases (MMPs). While estrogen is known as an inducer of endometrial growth, its role in specific expression of MMP family members in vivo is poorly characterized. E2-induced changes in MMP-2, -3, -7, and -9 mRNA and protein expression were analyzed to survey regulation along an extended time course 0-72 hours post-treatment. Because E2 effects inflammatory-like changes that may alter MMP expression, we assessed changes in tissue levels of TNF-alpha and MCP-1, and we utilized dexamethasone (600 microg/kg) to better understand the role of inflammation on matrix remodeling.  相似文献   

19.
This study investigated the effect of sex hormones on mustard oil (MO)-induced visceral hypersensitivity in female rats and analyzed possible involved signaling pathways. Female rats, either intact or ovariectomized (OVX), were prepared for abdominal muscle electromyography in response to colorectal distension after intracolonic instillation of MO. The effect of MO intracolonic sensitization was evaluated in intact rats, OVX rats, and OVX rats pretreated with a single injection of 17beta-estradiol (E), progesterone (P), E+P, or vehicle. cAMP-responsive element-binding protein (CREB) and phosphorylated CREB (pCREB) were detected in the superficial dorsal horn of L6 and S1 in MO or mineral oil-treated OVX rats with/without colorectal distension and estrogen replacement. The distal colorectum was removed for histological evaluation of inflammatory severity in MO-treated intact or OVX rats. The MO-treated rats had significantly higher visceromotor reflex than controls (enhanced visceral hypersensitivity), whereas OVX eliminated this hypersensitivity. After a single injection of E or E+P, the rats rapidly restored MO-induced visceral hypersensitivity within 2 h. Estrogen also rapidly induced a dose-dependent increase in pCREB expression in the superficial dorsal horn neurons in MO-treated, but not mineral oil-treated, OVX rats. The present study suggests that estrogen can rapidly modulate visceral hypersensitivity induced by MO intracolonic instillation in conscious female rats, which may involve spinal activation of the cAMP response element-mediated gene induction pathway.  相似文献   

20.
BACKGROUND: We have recently demonstrated that 17beta-estradiol (E2) inhibits the increase of inducible nitric oxide synthetase (iNOS) activity in selected model systems such as macrophages, microglia, smooth muscle cells, and proposed that this effect might be associated with an anti-inflammatory activity of this hormone. Here we investigate the effects of endogenous estrogens in rats subjected to carrageenan-induced pleurisy. MATERIALS AND METHODS: Adult female rats were ovariectomized 3 weeks before the experiments to deplete circulating estrogens. Selected inflammatory markers, landmarks of the delayed phase of carrageenan-induced pleurisy, were measured in intact (N-OVX), and ovariectomized (OVX) female rats. In addition, the effect of hormone replacement was evaluated in ovariectomized rats with intraperitoneal injection of 17beta-estradiol (E2; 50 microg/kg) 1 hr before carrageenan treatment (OVX + E2). RESULTS: Ovariectomy enhanced the carrageenan-induced degree of pleural exudation and polymorphonuclear leukocyte migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and lipid peroxidation were significantly increased in estrogens-deprived rats. The iNOS in lung samples was significantly increased by the surgery. The increase of iNOS activity was correlated with a marked enhancement in the production of TNF-alpha and IL-1beta. Immunohistochemical analysis for P-selectin and ICAM-I, as well as nitrotyrosine and poly (ADP-ribose) synthetase (PARS) revealed a positive staining in lungs from carrageenan-treated rats, which was markedly enhanced in ovariectomized rats when compared to cycling rats, particularly in the estrous phase of the cycle. Estrogen replacement counteracted the effect of surgery on all of the above indicators of lung inflammation, suggesting that in the cycling rat this hormone plays a key role in the increased sensitivity to inflammatory injury observed in the OVX rat. CONCLUSION: This study demonstrates that endogenous estrogens production plays an important protective role against carrageenan-induced acute inflammation by decreasing the expression of specific markers of the delayed phase of this well-known model of acute inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号