首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequencing of the tammar wallaby (Macropus eugenii) reveals insights into genome evolution, and mammalian reproduction and development.  相似文献   

2.
Size variation of body and skull of five species of Australian mammals (echidna, Tachyglossus aculeatus ; brush-tail possum, Trichosurus vulpecula ; eastern grey kangaroo, Macropus giganteus ; western grey kangaroo, M. fuliginosus ; red kangaroo, M. rufus ), is related to climatic factors. All five species show trends in body size that conform with Bergmann's rule, individuals from colder environments being larger than those from warmer areas. The western and eastern grey kangaroos also conform with Allen's rule, the relative size of their extremities being large in warmer areas. In four of the five species (not the red kangaroo) body size is also correlated with indices of biomass productivity. However, since biomass productivity and ambient temperature are related to some extent, it is difficult to separate the effects of these factors.  相似文献   

3.
Abstract

The endogenous activity cycle of the nocturnal bannertail kangaroo rat was investigated. Although bannertail activity is a function of the lunar day as well as the solar day, all ten subjects exhibited free‐running activity periods of solar‐day length; there was no evidence of an endogenous lunar‐day cycle. Animals were provided with a burrow system and a small pseudo‐desert, a laboratory facility in which animal activity data closely resembled measurements taken in the field. Several analytical techniques for quantifying the data were utilized, and one, the mean interval of activity, is recommended to other investigators.  相似文献   

4.
When moving slowly, kangaroos plant their tail on the ground in sequence with their front and hind legs. To determine the tail''s role in this ‘pentapedal’ gait, we measured the forces the tail exerts on the ground and calculated the mechanical power it generates. We found that the tail is responsible for as much propulsive force as the front and hind legs combined. It also generates almost exclusively positive mechanical power, performing as much mass-specific mechanical work as does a human leg during walking at the same speed. Kangaroos use their muscular tail to support, propel and power their pentapedal gait just like a leg.  相似文献   

5.
Larval development of D. roemeri occurs in the subcutaneous and intermuscular connective tissue and intramuscularly in the pelvic region and hind limbs of the wallaroo and eastern grey kangaroo. Host response to developing larvae is not evident at 1, 14 and 28 days. The development of D. roemeri in the red kangaroo exhibits features previously observed in both normal and abnormal hosts. Low-level blood microfilaraemia of brief duration occurs in the red kangaroo, which may act as a secondary reservoir of infection for other kangaroo and wallaby species. Among commercially harvested Macropodidae in Queensland there is a greater prevalence of D. roemeri in wallaroos and grey kangaroos than in red kangaroos. Infection is most prevalent in animals from south-central and south-western districts.  相似文献   

6.
A Bio-Inspired Hopping Kangaroo Robot with an Active Tail   总被引:1,自引:0,他引:1  
Inspired by kangaroo's locomotion, we report on developing a kangaroo-style hopping robot. Unlike bipeds, quadrupeds, or hexapods which altemate the legs for forward locomotion, the kangaroo uses both legs synchronously and generates the forward locomotion by continuous hopping behavior, and the tail actively balances the unwanted angular momentum generated by the leg motion. In this work, we generate the Center of Mass (CoM) locomotion of the robot based on the reduced-order Rolling Spring Loaded Inverted Pendulum (R-SLIP) model, for matching the dynamic behavior of the empirical robot legs. In order to compensate the possible body pitch variation, the robot is equipped with an active tail for pitch variation compensation, emulating the balance mechanism of a kangaroo. The robot is empirically built, and various design issues and strategies are addressed. Finally, the experimental evaluation is executed to validate the performance of the kangaroo-style robot with hopping locomotion.  相似文献   

7.
The reversibility of phenotypic evolution is likely to be strongly influenced by the ability of underlying developmental systems to generate ancestral traits. However, few studies have quantitatively linked these developmental dynamics to traits that reevolve. In this study, we assess how changes in the inhibitory cascade, a developmental system that regulates relative tooth size in mammals, influenced the loss and reversals of the posthypocristid, a molar tooth crest, in the kangaroo superfamily Macropodoidea. We find that posthypocristid loss is linked with reduced levels of posterior molar inhibition, potentially driven by selection for lophodont, higher‐crowned molar teeth. There is strong support for two posthypocristid reversals, each occurring after more than 15 million years of absence, in large‐bodied species of Macropus, and two giant extinct species of short‐faced sthenurine kangaroo (Procoptodon). We find that whereas primitive posthypocristid expression is linked to higher levels of posterior molar inhibition, reemergence is tied to a relative increase in third molar size associated with increasing body mass, producing molar phenotypes similar to those in mouse where the ectodysplasin pathway is upregulated. We argue that although shifts in the inhibitory cascade may enable reemergence, dietary ecology may limit the frequency of phylogenetic reversal.  相似文献   

8.
9.
10.
Introduced deer occur in many forests and woodlands in Australia and potentially play an important role in influencing the floristics and structure of these landscapes through eating plants and disseminating seeds. In a glasshouse trial, we tested whether field‐collected scats of Fallow Deer (Dama dama) contained viable plant seeds. Scats of deer obtained from a woodland study area in Kosciuszko National Park, New South Wales, produced seedlings from a range of native and introduced plant species. Forbs and herbs were dominant in these samples, confirming the grazing behaviour of deer at the time scats were collected. Samples of scats from Eastern Grey Kangaroos (Macropus giganteus), collected contemporaneously from the same sites as deer scats, also produced plant germinants. By volume, deer scats produced a greater diversity of plant germinants, including native and weed species, than did kangaroo scats. Although no weed species emanating from deer or kangaroo scats were of national significance, several species were of regional environmental significance, including Common Mullein (Verbascum thapsis), which was only found germinating out of deer scat, Stinkgrass (Eragrostis cilianensis) and Purpletop (Verbena bonariensis). In addition to dispersing viable seeds, Fallow Deer may also influence vegetation structure through their browsing. Further research is necessary to elucidate their respective role in dispersing native and introduced plants as well as any impacts that foraging behaviour might be having on woodland landscapes, to better inform management of the resident deer population.  相似文献   

11.
Abstract Intense cyclones might be expected to adversely affect populations of arboreal mammals, either directly or as a consequence of the destruction of food resources and other key habitat elements. However, such impacts have rarely been quantified. The present study examined the response of five species of arboreal folivorous marsupials to Severe Cyclone Larry at nine sites in upland rainforests of the Atherton Tableland, north‐east Australia. Sites were originally surveyed for folivores in 1995–1997, and then resurveyed in 2006, 6–8 months after Cyclone Larry had traversed the region. All sites showed evidence of structural damage to vegetation, but overall damage levels (assessed in terms of canopy cover, damage to trees, basal area of dead trees and volume of woody debris) decreased from east to west across the study region. The detectability of rainforest possums increased after the cyclone. For the most commonly observed species, the proportion of individuals observed >5 m from survey transects was correlated with the amount of structural damage to vegetation. To avoid confounding changes in detectability with changes in abundance, only observations close (<5 m) to transects were used to estimate folivore abundance before and after the cyclone. On this basis, there were no significant differences between pre‐ and post‐cyclone abundance estimates for any folivore species. Further, changes in folivore abundance after the cyclone were not correlated with damage to vegetation across sites. Cyclone Larry does not appear to have caused a catastrophic loss of key habitat resources for marsupial folivores at the sites surveyed. The high degree of folivory practiced by marsupial folivores may help make them resilient to cyclone impacts. These conclusions are more robust for three commonly observed folivore species (Hemibelideus lemuroides, Pseudochirulus herbertensis and Trichosurus vulpecula johnstonii) than for two less frequently encountered species (Pseudochirops archeri and Dendrolagus lumholtzi).  相似文献   

12.
AIM: To determine the culturable biodiversity of anaerobic bacteria isolated from the forestomach contents of an eastern grey kangaroo, Macropus giganteus, using phenotypic characterization and 16S rDNA sequence analysis. METHODS AND RESULTS: Bacteria from forestomach contents of an eastern grey kangaroo were isolated using anaerobic media containing milled curly Mitchell grass (Astrebla lappacea). DNA was extracted and the 16S rDNA sequenced for phylogenetic analysis. Forty bacterial isolates were obtained and placed in 17 groups based on phenotypic characteristics and restriction enzyme digestion of 16S rDNA PCR products. DNA sequencing revealed that the 17 groups comprised five known species (Clostridium butyricum, Streptococcus bovis, Clostridium sporogenes, Clostridium paraputrificum and Enterococcus avium) and 12 groups apparently representing new species, all within the phylum Firmicutes. CONCLUSIONS: Foregut contents from Australian macropod marsupials contain a microbial ecosystem with a novel bacterial biodiversity comprising a high percentage of previously unrecognized species. SIGNIFICANCE AND IMPACT OF THE STUDY: This study adds to knowledge of Australia's unique biodiversity, which may provide a future bioresource of genetic information and bacterial species of benefit to agriculture.  相似文献   

13.
The Australasian marsupial family Macropodidae includes potoroos and bettongs (Potoroinae) as well as larger kangaroos, wallabies, and pademelons (Macropodinae). Perhaps the most enigmatic macropodid is the banded hare wallaby, Lagostrophus fasciatus, a taxon listed as vulnerable by the IUCN. Lagostrophus had traditionally been grouped as a sister-taxon to hare wallabies (Lagorchestes), in a clade with hypsodont macropodines, or intercalated in some other fashion within Macropodinae. Flannery (1983, 1989) proposed a radically different hypothesis wherein Lagostrophus is outside of Macropodinae and is more closely related to extinct sthenurine (short-faced) kangaroos. Given this controversy, we addressed the phylogenetic placement of the banded hare wallaby using molecular sequences for three mitochondrial genes (12S rRNA, valine tRNA, 16S rRNA) and one nuclear gene (protamine P1). Diverse phylogenetic methods all provided robust support for a macropodine clade that excludes the banded hare wallaby. The split between macropodines and the banded hare wallaby was estimated at approximately 20 million years ago (mya) using the Thorne/Kishino relaxed molecular clock method. Whereas our molecular results neither corroborate nor refute the sthenurine hypothesis, since all short-faced kangaroos and their immediate ancestors are extinct, the overriding implication of molecular phylogenetic analyses is manifest: the banded hare wallaby is the only living relict of an ancient kangaroo lineage. Regardless of its precise relationships, special efforts should be directed at conserving this unique and endangered taxon, which has not been recorded from mainland Australia since 1906 and is now restricted to two tiny islands off the coast of Western Australia.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022697300092  相似文献   

14.
Lethal control of wild dogs – that is Dingo (Canis lupus dingo) and Dingo/Dog (Canis lupus familiaris) hybrids – to reduce livestock predation in Australian rangelands is claimed to cause continental‐scale impacts on biodiversity. Although top predator populations may recover numerically after baiting, they are predicted to be functionally different and incapable of fulfilling critical ecological roles. This study reports the impact of baiting programmes on wild dog abundance, age structures and the prey of wild dogs during large‐scale manipulative experiments. Wild dog relative abundance almost always decreased after baiting, but reductions were variable and short‐lived unless the prior baiting programme was particularly effective or there were follow‐up baiting programmes within a few months. However, age structures of wild dogs in baited and nil‐treatment areas were demonstrably different, and prey populations did diverge relative to nil‐treatment areas. Re‐analysed observations of wild dogs preying on kangaroos from a separate study show that successful chases that result in attacks of kangaroos by wild dogs occurred when mean wild dog ages were higher and mean group size was larger. It is likely that the impact of lethal control on wild dog numbers, group sizes and age structures compromise their ability to handle large difficult‐to‐catch prey. Under certain circumstances, these changes sometimes lead to increased calf loss (Bos indicus/B. taurus genotypes) and kangaroo numbers. Rangeland beef producers could consider controlling wild dogs in high‐risk periods when predation is more likely and avoid baiting at other times.  相似文献   

15.
Species distribution models have come under criticism for being too simplistic for making robust future forecasts, partly because they assume that climate is the main determinant of geographical range at large spatial extents and coarse resolutions, with non‐climate predictors being important only at finer scales. We suggest that this paradigm might be obscured by species movement patterns. To explore this we used contrasting kangaroo (family Macropodidae) case studies: two species with relatively small, stable home ranges (Macropus giganteus and M. robustus) and three species with more extensive, adaptive ranging behaviour (M. antilopinus, M. fuliginosus and M. rufus). We predicted that non‐climate predictors will be most influential to model fit and predictive performance at local spatial resolution for the former species and at landscape resolution for the latter species. We compared residuals autocovariate – boosted regression tree (RAC‐BRT) model statistics with and without species‐specific non‐climate predictors (habitat, soil, fire, water and topography), at local‐ and landscape‐level spatial resolutions (5 and 50 km). As predicted, the influence of non‐climate predictors on model fit and predictive performance (compared with climate‐only models) was greater at 50 compared with 5 km resolution for M. rufus and M. fuliginosus and the opposite trend was observed for M. giganteus. The results for M. robustus and M. antilopinus were inconclusive. Also notable was the difference in inter‐scale importance of climate predictors in the presence of non‐climate predictors. In conclusion, differences in autecology, particularly relating to space use, may contribute to the importance of non‐climate predictors at a given scale, not model scale per se. Further exploration of this concept across a range of species is encouraged and findings may contribute to more effective conservation and management of species at ecologically meaningful scales.  相似文献   

16.
The direct and indirect interactions that large mammalian carnivores have with other species can have far‐reaching effects on ecosystems. In recent years there has been growing interest in the role that Australia's largest terrestrial predator, the dingo, may have in structuring ecosystems. In this study we investigate the effect of dingo exclusion on mammal communities, by comparing mammal assemblages where dingoes were present and absent. The study was replicated at three locations spanning 300 km in the Strzelecki Desert. We hypothesized that larger species of mammal subject to direct interactions with dingoes should increase in abundance in the absence of dingoes while smaller species subject to predation by mesopredators should decrease in abundance because of increased mesopredator impact. There were stark differences in mammal assemblages on either side of the dingo fence and the effect of dingoes appeared to scale with body size. Kangaroos and red foxes were more abundant in the absence of dingoes while Rabbits and the Dusky Hopping‐mouse Notomys fuscus were less abundant where dingoes were absent, suggesting that they may benefit from lower red fox numbers in the presence of dingoes. Feral cats and dunnarts (Sminthopsis spp.) did not respond to dingo exclusion. Our study provides evidence that dingoes do structure mammal communities in arid Australia; however, dingo exclusion is also associated with a suite of land use factors, including sheep grazing and kangaroo harvesting that may also be expected to influence kangaroo and red fox populations. Maintaining or restoring populations of dingoes may be useful strategies to mitigate the impacts of mesopredators and overgrazing by herbivores.  相似文献   

17.
18.
The spatial arrangement of perennial vegetation is critical for ecosystem function in drylands. While much is known about how vegetation patches respond to grazing and abiotic conditions, the size dynamics of individual plants is mostly limited to theoretical studies. We measured the size distribution (mean, variance, skewness) and density of individual grasses, and grass species composition at 451 sites spanning a range of grazing intensities across three broad vegetation communities in semi-arid eastern Australia. We assessed the relative role of grazing by livestock (cattle and sheep), native (kangaroos) and introduced (rabbits) free ranging herbivores, and several environmental measures (productivity, diversity, composition and groundstorey plant cover) on the size distribution and density of individual grasses. We found mean grass size and density were more sensitive to shifts in grazing intensity and environmental conditions than size variance or the frequency of the smallest individuals (skewness), and shifts were mostly driven by site productivity and cattle and kangaroo grazing. Sheep grazing only reduced mean grass size, and rabbit grazing had no consistent effects. Importantly, we found that site productivity and species composition altered the impacts of grazing on grass density and size distribution. For example, increasing cattle grazing led to larger grasses in low productivity sites. It also led to larger, denser, more variable-sized grasses among grass species from sites with finer soil texture. Increasing kangaroo grazing led to smaller, denser individuals among grass species from sites with coarse soil texture. At high diversity sites kangaroo grazing led to denser, more homogenised grass sizes with a lower frequency of small individuals. Understanding the in situ response of individual plant sizes gives us insights into the processes driving shifts in perennial vegetation patchiness, improving our ability to predict how the spatial arrangement of ecosystems might change under global change scenarios.  相似文献   

19.
Large carnivores can play a pivotal role in maintaining healthy, balanced ecosystems. By suppressing the abundances and hence impacts of herbivores and smaller predators, top predators can indirectly benefit the species consumed by herbivores and smaller predators. Restoring and maintaining the ecosystem services that large carnivores provide has been identified as a critical step required to sustain biodiversity and maintain functional, resilient ecosystems. Recent research has shown that Australia's largest terrestrial predator, the Dingo (Canis lupus dingo), has strong effects on ecosystems in arid Australia and that these effects are beneficial for the conservation of small mammals and vegetation. Similarly, there is evidence from south‐eastern Australia that dingoes suppress the abundance of macropods and red Fox (Vulpes vulpes). It is likely that dingoes in south‐eastern Australia also generate strong indirect effects on the prey of foxes and macropods, as has been observed in the more arid parts of the continent. These direct and indirect effects of dingoes have the potential to be harnessed as passive tools to assist biodiversity conservation through the maintenance of ecologically functional dingo populations. However, research is required to better understand dingoes' indirect effects on ecosystems and the development of dingo management strategies that allow for both the preservation of dingoes and protection of livestock.  相似文献   

20.
Giant kangaroo rats (Dipodomys ingens) continually modify their burrow precincts by digging tunnels, clipping plants, and other activities. In the valley grasslands of the Carrizo Plain Natural Area (San Luis Obispo County, California), this chronic disturbance to soil and vegetation promoted the establishment of exotic ruderal and early successional plant species. Erodium cicutarium, Bromus madritensis ssp. rubens, and other Mediterranean annuals were found to constitute a very large proportion of the vegetation on giant kangaroo rat precincts. When vegetation on precincts was compared with the vegetation in less disturbed intermediate areas located between precincts, species richness, cover and frequency of exotic plants were significantly greater on precincts. The reverse was found for native species. In addition, exotic species encountered in this study had significantly larger seeds than did native species, suggesting that these granivorous kangaroo rats preferentially cache large weed seeds on their precincts. Since the kangaroo rats depend on exotic plants for food and the exotic plants depend upon the kangaroo rats to disturb their habitat continually, the weed-kangaroo rat relationship is mutualistic. This strong relationship may also inhibit population growth of native grassland plants which occupy disturbed habitats but have difficulty competing with exotic weeds for resources. From a conservation perspective, this mutualism presents an intractable management dilemma. Restoration of valley grasslands where endangered giant kangaroo rats occur, to conditions where native species dominate, may be impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号