首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Ruan QX  Zhou P  Hu BW  Ji D 《The FEBS journal》2008,275(2):219-232
We used generalized two-dimensional NMR-NMR correlation to examine the effect of potassium ions on the conformation transition in silk fibroin to investigate the possibility that the fairly high K+ ion content found in the distal end of silk-secreting ducts in the silkworms could have a bearing on natural formation of the silk fiber. This has enabled us to propose a detailed mechanism for the transition process. Our evidence indicates that increasing the [K+] from 0 to 3.7 mg.g(-1) in the silk fibroin, as is thought to occur as the silk fibroin moves through the secretory pathway to the spigot, produces a sequence of secondary structural changes: helix and/or random coil-->helix-like-->beta-sheet-like-->beta-sheet. The sequence is the same as that produced in silk fibroin films by decreasing the pH of fibroin from 6.8 to 4.8. In addition, we used Raman spectroscopy to study the effect of K+ ions on the Fermi doublet resonance of the tyrosyl phenolic ring at 850 and 830 cm(-1). The intensity ratio I(850)/I(830) at these wave numbers indicated that the hydrogen bonding formed by the tyrosyl phenolic-OH becomes more stable with an increase in the K+ ion concentration as above. Our investigation on the effect of K+ ions on fibroin may help provide a theoretical basis for understanding the natural silk-spinning process and the conditions required for biomimetic spinning. It may also have relevance to the aggregation of other beta-sheet proteins, including prion proteins, neurofibrillary proteins and amyloid plaques.  相似文献   

2.
The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers.  相似文献   

3.
Bombyx mori silk fibroin molecule is known to exist in two distinct structural forms: silk I (unprocessed silk fibroin) and silk II (processed silk fibroin). Using synthetic peptides, we attempt to explore the structural role played by Ser and Tyr residues on the appearance of silk I structural form of the fibroin. Twelve selected peptides (1-12) incorporating Ser and Tyr residues in the (Ala-Gly)(n) copolypeptide, that is, the sequences mimicking the primary structure of B. mori silk fibroin molecule, have been investigated under the silk I state, employing high-resolution (13)C cross-polarization/magic-angle spinning (CP/MAS) NMR spectroscopy. To acquire the silk I structural form, all the peptides were dissolved in 9 M LiBr and then dialyzed extensively against water, as established previously for the synthetic (Ala-Gly)(15) copolypeptide and B. mori silk fibroin. The diagnostic line shape of the Ala C(beta) peaks and the conformation-dependent (13)C chemical shifts of Ala and Gly resonances are presented to analyze and characterize the structural features. The results indicate that the incorporation of one Ser and/or one Tyr residue(s) at selected position in the basic (Ala-Gly)(15) sequence tend to retain predominantly the silk I structure. Conversely, the repeat pentameric and octameric Ala-Gly-Ser-Gly-Ala-Gly sequences, for example, (Ala-Gly-Ser-Gly-Ala-Gly)(5) or (Ala-Gly-Ser-Gly-Ala-Gly)(8), preferred predominantly the silk II form. The peptide sequences incorporating Ser and Tyr residue(s) into repeat Ala-Gly-Ser-Gly-Ala-Gly sequences, however, adopted the silk II structure with certain content structural heterogeneity or randomness, more pronounced for specific peptides studied. Interestingly, the crystalline Cp fraction of B. mori silk fibroin, when mixed with (Ala-Gly-Ser-Gly-Ala-Gly)(5) sequence in a 5:1 molar ratio, dissolved in 9 M LiBr, and dialyzed against distilled water, favor the silk I form. The finding tends to suggest that the less stable silk I form in (Ala-Gly-Ser-Gly-Ala-Gly)(n) sequences is likely to be induced and facilitated via intermolecular interactions with the Cp fraction, which predominantly prefers the silk I form under similar conditions; however, the hydrogen-bond formation involving O(gamma)H groups of the Ser residues may have some implications.  相似文献   

4.
Bombyx mori silk fibers were dissolved in N-methyl morpholine N-oxide (MMNO), an organic cyclic amine oxide used for the solvent spinning of regenerated cellulosic fibers. The commercial MMNO monohydrate used in this study as a solvent for silk is a hygroscopic compound crystalline at room temperature, which becomes an active solvent after melting at 76 degrees C. The degree of hydration of MMNO was checked by DSC measurements. The solvation power of MMNO towards silk fibroin drastically decreased at a water content > or = 20-21% w/w. Dissolution of silk required both thermal and mechanical energy. The optimum temperature was 100 degrees C. At lower temperatures dissolution proceeded very slowly. At higher temperatures, rapid depolymerization of silk fibroin occurred. The value of the Flory-Huggins interaction parameter chi for the MMNO-H2O-silk fibroin system was -8.5, suggesting that dissolution is a thermodynamically favored process. The extent of degradation of silk fibroin was assessed by measuring the intrinsic viscosity and determining the amino acid composition of silk after regeneration with an aqueous methanol solution, which was effective in removing the solvent and coagulating silk. Regenerated silk fibroin membranes were characterized by infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The prevailing molecular conformation of silk fibroin chains was the beta-sheet structure, as shown by the intense amide I-III bands at 1704, 1627, 1515, 1260, and 1230 cm(-1). The value of the I1260/I1230 intensity ratio (crystallinity index) was 0.68, comparable to that of the fibers. The DSC thermogram was characteristic of a silk fibroin material with unoriented beta-sheet crystalline structure, with an intense decomposition endotherm at 294 degrees C. The SEM examination of fractured surfaces showed the presence of a dense microstructure with a very fine texture formed by densely packed roundish particles of about 100-200 nm diameter.  相似文献   

5.
Asakura T  Sugino R  Yao J  Takashima H  Kishore R 《Biochemistry》2002,41(13):4415-4424
The solid-state (13)C CP-MAS NMR spectra of biosynthetically labeled [(13)C(alpha)]Tyr, [(13)C(beta)]Tyr, and [(13)C(alpha)]Val silk fibroin samples of Bombyx mori, in silk I (the solid-state structure before spinning) and silk II (the solid-state structure after spinning) forms, have been examined to gain insight into the conformational preferences of the semicrystalline regions. To establish the relationship between the primary structure of B. mori silk fibroin and the "local" structure, the conformation-dependent (13)C chemical shift contour plots for Tyr C(alpha), Tyr C(beta), and Val C(alpha) carbons were generated from the atomic coordinates of high-resolution crystal structures of 40 proteins and their characteristic (13)C isotropic NMR chemical shifts. From comparison of the observed Tyr C(alpha) and Tyr C(beta) chemical shifts with those predicted by the contour plots, there is strong evidence in favor of an antiparallel beta-sheet structure of the Tyr residues in the silk fibroin fibers. On the other hand, Tyr residues take a random coil conformation in the fibroin film with a silk I form. The Val residues are likely to assume a structure similar to those of Tyr residues in silk fiber and film. Solid-state (2)H NMR measurements of [3,3-(2)H(2)]Tyr-labeled B. mori silk fibroin indicate that the local mobility of the backbone and the C(alpha)-C(beta) bond is essentially "static" in both silk I and silk II forms. The orientation-dependent (i.e., parallel and perpendicular to the magnetic field) solid-state (15)N NMR spectra of biosynthetically labeled [(15)N]Tyr and [(15)N]Val silk fibers reveal the presence of highly oriented semicrystalline regions.  相似文献   

6.
The peptide backbone conformation and salient structural details of oxytocin were examined by laser Raman spectroscopy. Spectra were obtained in the solid phase, water, 2H2O, and dimethyl sulfoxide solutions. A distinct Amide I band was obtained at 1663 cm-1 for aqueous and deuterated samples and 1666 cm-1 for the solid sample. A relatively high frequency Amide III band at 1260 cm-1 was obtained. It is concluded that these Amide I and III bands arise from the "beta-turn"-like conformation of oxytocin. The tyrosine side chain, according to the I850 cm-1/I830 cm-1 intensity ratio, is exposed to the solvent. The S-S stretching vibration at 512 cm-1 indicates the conformation of C-C-S-S-C-C in the disulfide bridge of oxytocin in the ring is gauche-gauche-gauche.  相似文献   

7.
Taddei P  Monti P 《Biopolymers》2005,78(5):249-258
The structural organization of Bombyx mori silk fibroin was investigated by infrared (IR) spectroscopy. To this aim, (AG)15 and other model peptides of varying chain length, containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid phase method and their spectroscopic properties were determined. Both the position and the relative content of Y, V, and S residues in the (AG)n model system appeared critical in determining the preferred conformation, i.e., silk I, silk II, and unordered structures. Curve fitting analysis in the amide I range showed that the model peptides with prevailing silk II structure displayed different beta-sheet content, which was dependent on the degree of interruption of the (AG)n sequence. In this regard, the bands at about 1000 and 980 cm(-1), specifically assigned to the AG sequence of the B. mori silk fibroin chain, were identified as marker of the degree of interruption of the (AG)n sequence.A stable silk I structure was observed only when the Y residue was located near the chain terminus, while a silk I --> silk II conformational transition occurred when it was positioned in the central region of the peptide.Analysis of the second-derivative spectra in the amide I range allowed us to identify a band at 1639 cm(-1) (4 --> 1 hydrogen-bonded type II beta-turns), which is characteristic of the silk I conformation.  相似文献   

8.
Taddei P  Asakura T  Yao J  Monti P 《Biopolymers》2004,75(4):314-324
For a deeper insight into the structure of Bombyx mori silk fibroin, some model peptides containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid-phase method and analyzed by Raman spectroscopy in order to clarify their conformation and to evaluate the formation and/or disruption of the ordered structure typical of B. mori silk fibroin upon incorporation of Y, V, and S residues into the basic (AG)n sequence. The Raman results indicated that the silk I structure remains stable only when the Y residue is positioned near the chain terminus; otherwise, a silk I --> silk II conformational transition occurs. The peptides AGVGAGYGAGVGAGYGAGVGAGYG(AG)3 and (AG)3YG(AG)2VGYG(AG)3YG(AG)3 treated with LiBr revealed a prevalent silk II conformation; moreover, the former contained a higher amount of random coil than the latter. This result was explained in relation to the different degrees of interruption of the (AG)n sequence. The Raman analysis of the AGSGAG-containing samples confirmed that the AGSGAG hexapeptide is a good model for the silk II crystalline domain. As the number of AGSGAG repeating units decreased, the random coil content increased. The study of the Y domain (I850/I830 intensity ratio) allowed us to hypothesize that in the packing characteristic of Silk I and Silk II conformations the Y residues experience different environments and hydrogen-bonding arrangements; the packing typical of silk I structure traps the tyrosyl side chains in environments more unfavorable to phenoxyl hydrogen-bonding interactions.  相似文献   

9.
The structure of a crystalline form of Bombyx mori silk fibroin, commonly found before the spinning process (known as silk I), has been proposed as a repeated beta-turn type II-like structure by combining data obtained from solid-state two dimensional spin-diffusion nuclear magnetic resonance and rotational-echo double-resonance (T. Asakura et al., J Mol Biol, in press). In this paper, the WAXS pattern of alanine-glycine alternating copolypeptide, (Ala-Gly)(15) with silk I form which was used for a silk I model of B. mori silk fibroin was observed. The pattern calculated with the silk I model proposed by us is well reproduced the observed one, indicating the validity of the proposed silk I model. In addition, two peptides of the other repeated sequences which contain Tyr or Val residues in the silk fibroin,23 were synthesized; (Ala-Gly-Tyr-Gly-Ala-Gly)(5) and (X-Gly)(15) where X is Tyr for the 7th, 15th and 23th residues, and Val for the 11th residue and Ala for other residues. There are no sharp peaks in the WAXS patterns, and therefore both samples are in the non-crystalline state. This is in agreement with the (13)C CP/MAS NMR result, where the conformation is mainly random coil.  相似文献   

10.
Non-catalytic hydrothermal decomposition of sericin and fibroin from silk waste into useful protein and amino acids was examined in a closed batch reactor at various temperatures, reaction times, and silk to water ratios to examine their effects on protein and amino acid yields. For the decomposition of sericin, the highest protein yield was found to be 0.466 mg protein/mg raw silk, obtained after 10 min hydrothermal reaction of silk waste at 1:100 silk to water ratio at 120 degrees C. The highest amino acid yield was found to be 0.203 mg amino acids/mg raw silk, obtained after 60 min of hydrothermal reaction of silk waste at 1:20 silk to water ratio at 160 degrees C. For the hydrothermal decomposition of fibroin, the highest protein yield was 0.455 mg protein/mg silk fibroin (1:100, 220 degrees C, 10 min) and that of amino acids was 0.755 mg amino acids/mg silk fibroin (1:50, 220 degrees C, 60 min). The rate of silk fibroin decomposition could be described by surface reaction kinetics. The soluble reaction products were freeze-dried to obtain sericin and fibroin particles, whose conformation and crystal structure of the particles were shown to differ from the original silk materials, particularly in the case of fibroin, in which the change from beta-sheet conformation to alpha-helix/random coil was observed.  相似文献   

11.
Raman spectra of oxy- and deoxyhemoglobin obtained with 218 and 200 nm pulsed (7 ns) laser excitation show changes (loss of 880 cm-1 tryptophan band intensity, increase in the 830/850 cm-1 tyrosine doublet intensity ratio) which are attributed to the aromatic contacts (Trp beta 37-Tyr alpha 140 and Tyr alpha 42-Asp beta 99) that are specific to the T quaternary structure. At high concentration (2 mM in heme) HbCO shows the same spectral signatures as HbO2. As the HbCO concentration is decreased, however, the spectra approach those shown by deoxy-Hb. This dilution effect is attributable to photolysis, which increases with decreasing concentration. The results imply that the HbCO photoproduct shows the same aromatic environments as does deoxy-Hb. Thus, T-like contacts are apparently formed at the alpha 1 beta 2 interface within 7 ns of photolysis, a time short compared to the spectral alterations of the heme group (approximately 100 ns, approximately 1 microsecond, and approximately 20 microseconds) which have previously been attributed to tertiary and quaternary relaxations.  相似文献   

12.
Wen ZQ  Armstrong A  Thomas GJ 《Biochemistry》1999,38(10):3148-3156
Pf1, a class II filamentous virus, has been investigated by ultraviolet resonance Raman (UVRR) spectroscopy with excitation wavelengths of 257, 244, 238, and 229 nm. The 257-nm UVRR spectrum is rich in Raman bands of the packaged single-stranded DNA (ssDNA) genome, despite the low DNA mass (6%) of the virion. Conversely, the 229-nm UVRR spectrum is dominated by tyrosines (Tyr 25 and Tyr 40) of the 46-residue alpha-helical coat subunit. UVRR spectra excited at 244 and 238 nm exhibit Raman bands diagnostic of both viral DNA and coat protein tyrosines. Raman markers of packaged Pf1 DNA contrast sharply with those of the DNA packaged in the class I filamentous virus fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J., Jr. (1997) Biochemistry 36, 7810-7820]. Interestingly, deoxynucleotides of Pf1 DNA exhibit sugars in the C2'-endo/anti conformation and bases that are largely unstacked, compared with C3'-endo/anti conformers and very strong base stacking in fd DNA; hydrogen-bonding interactions of thymine carbonyls are also different in Pf1 and fd. On the other hand, coat protein tyrosines of Pf1 exhibit Raman markers of ring environment identical to those of fd, including an anomalous singlet at 853 cm-1 in lieu of the canonical Fermi doublet (850/830 cm-1) found in globular proteins. The results indicate markedly different modes of organization of ssDNA in Pf1 and fd virions, despite similar environments for coat protein tyrosines, and suggest strong hydrogen-bonding interactions between DNA bases and coat subunits of Pf1 but not between those of fd. We propose that structural relationships between the protein coat and encapsidated ssDNA genome are also fundamentally different in the two assemblies.  相似文献   

13.
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.  相似文献   

14.
Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure."  相似文献   

15.
Monti P  Taddei P  Freddi G  Ohgo K  Asakura T 《Biopolymers》2003,72(5):329-338
This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model.  相似文献   

16.
Tyrosinase could oxidize tyrosyl residues in silk fibroin and result in the production of activated o‐quinone residues, which could facilitate the grafting of the functional amino‐compounds onto silk fibers. In this study, the enzymatic modifications of Bombyx mori silk fibroin with tyrosinase and chitosan were investigated, aiming at improving the properties of silk fabrics, including dyeability, crinkling resistance, and antibacterial activity. The grafting grades of chitosan were evaluated by a color‐development method using bromocresol green. The result indicated that chitosan molecules were not only adsorbed on silk fibers via electrostatic interactions, they also could react with the oxidized silk fibers with tyrosinase. For the silk fabric combinedly treated with tyrosinase and chitosan, tensile strength and crinkling resistance were noticeably increased as compared to that of the chitosan‐treated. The antibacterial activity and its durability measurements revealed the actions of the tyrosinase‐catalyzed grafting of chitosan. The efficacy of the graft reaction might be further enhanced by increasing the accessibility of reactive sites in silk fibers.  相似文献   

17.
Bombyx mori silk fibroin fiber is a fibrous protein produced by the silkworm at room temperature and from an aqueous solution whose primary structure is highly repetitive. In this study we analyzed the structural characteristics of native peptides, derived from B. mori silk fibroin, with formic acid treatment using high-resolution solid-state 13C NMR. We establish that the Ser residue bearing a short polar side chain has the ability to stabilize the conformation formed in the model peptides due to its ability to form intermolecular hydrogen bonds involving its hydroxyl group as a donor and the carbonyl groups of other residues as acceptors. On the other hand, insertion of Tyr residue in the basic (AG)n and (AGSGAG)n sequence motifs usually exhibited disruptive effects on the preferred conformations. Moreover, the environmental effect was investigated by mixing the native Cp fraction with the model peptides, showing that there is no significant structural difference on the Ser-containing peptides, while structural transformation was observed on the peptides containing the GAAS unit. This may be attributed to the fact that the Cp fraction promotes the formation of an antiparallel beta-sheet in the Ala-Ala unit. Such periodically disrupted ordered structures in the semicrystalline region of B. mori silk fibroin may be critical not only for facilitating the conformational transformation from silk I to silk II structural form but also for having some correlation with the unique properties of the silk materials.  相似文献   

18.
The flow stability of silk fibroin (SF) aqueous solutions with different concentrations under different temperatures was investigated. It was found that the flow stability decreased quickly with the increase of solution concentration and temperature. X-ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy analysis showed that silk fibroin in aqueous solution was mainly in random coil and alpha-helix conformation. However, it turned into alpha-helix and beta-sheet conformation after gelation, and both silk I and silk II crystalline structures appeared accordingly. The investigation implies that the original dilute regenerated SF aqueous solution should be stored under low temperature and concentrated just before spinning.  相似文献   

19.
Changes in the secondary structure and aggregation of chymotrypsinogen were investigated by infrared difference spectroscopy in conjunction with temperature and pressure tuning IR spectroscopy; both the amide I' band and side chain bands were studied. A prominent component of the amide I' band in the difference spectrum obtained upon cooling a chymotrypsinogen solution, or increasing the hydrostatic pressure, was observed in the region between 1627 and 1622 cm-1. Under denaturing conditions a white gel was formed, which is attributed to irreversible self-association or aggregation. This process was accompanied by the appearance of two new amide I' bands in the infrared spectrum of the protein: a very strong band at 1618 cm-1 and a weak band at 1685 cm-1. These bands are assigned to peptide segments with anti-parallel aligned beta-strands.  相似文献   

20.
There are still several problems associated with the spinning of dialyzed silk fibroin solutions. In this work some of these problems have been examined. The calcium nitrate tetrahydrate-methanol system was used to dissolve the silk fibroin. A compositional phase diagram was constructed at various concentrations of the solvent system. Regenerated fibroin powders from undialyzed fibroin solution in several coagulants showed different conformations. Regenerated powders from several coagulants except methanol and ethanol were resoluble in water. Atomic absorption analysis revealed that the calcium cations strongly interact with fibroin molecules in dialyzed fibroin solution, which may interfere with the regeneration of a strong fiber. Kinetic studies to determine the diffusion coefficient of methanol into dialyzed and concentrated fibroin solution were reported. The properties of both original and regenerated fibroin such as solubility in water and thermal behaviors using DSC were compared. Regenerated fibroin fiber was spun by the wet spinning method. An X-ray diffractogram showed that the regeneration process decreased the crystallinity of regenerated fibroin fiber. SEM images of the surface and cross section of the regenerated fibroin fibers were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号