首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cl- -current through toad skin epithelium depends on the potential in a way consistent with a potential-controlled Cl- permeability. Computer analysis of the Koefoed-Johnsen Ussing two-membrane model provided with constant membrane permeabilities indicates that the voltage- and time-dependent currents are not caused by a trivial Goldmand-type rectification and ion redistributions following transepithelial potential pertubations. Extended with a dynamic Cl- permeability in the apical membrane according to a Hodgkin-Huxley kinetic scheme, the model predicts voltage clamp data which closely resemble experimental observations. This extension of the classic frog skin model implies that the Cl- permeability is activated by a voltage change caused by the inward Na+ current through the apical membrane.  相似文献   

2.
Kilic G  Lindau M 《Biophysical journal》2001,80(3):1220-1229
We investigated the voltage dependence of membrane capacitance of pituitary nerve terminals in the whole-terminal patch-clamp configuration using a lock-in amplifier. Under conditions where secretion was abolished and voltage-gated channels were blocked or completely inactivated, changes in membrane potential still produced capacitance changes. In terminals with significant sodium currents, the membrane capacitance showed a bell-shaped dependence on membrane potential with a peak at approximately -40 mV as expected for sodium channel gating currents. The voltage-dependent part of the capacitance showed a strong correlation with the amplitude of voltage-gated Na+ currents and was markedly reduced by dibucaine, which blocks sodium channel current and gating charge movement. The frequency dependence of the voltage-dependent capacitance was consistent with sodium channel kinetics. This is the first demonstration of sodium channel gating currents in single pituitary nerve terminals. The gating currents lead to a voltage- and frequency-dependent capacitance, which can be well resolved by measurements with a lock-in amplifier. The properties of the gating currents are in excellent agreement with the properties of ionic Na+ currents of pituitary nerve terminals.  相似文献   

3.
Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1–R3) with smaller amino acids allows ionic currents to flow through the mutant gating pore, and these gating pore currents are pathogenic in some skeletal muscle periodic paralysis syndromes. The voltage dependence of gating pore currents provides information about the transmembrane position of the gating charges as S4 moves in response to membrane potential. Here we studied gating pore current in mutants of the homotetrameric bacterial sodium channel NaChBac in which individual arginine gating charges were replaced by cysteine. Gating pore current was observed for each mutant channel, but with different voltage-dependent properties. Mutating the first (R1C) or second (R2C) arginine to cysteine resulted in gating pore current at hyperpolarized membrane potentials, where the channels are in resting states, but not at depolarized potentials, where the channels are activated. Conversely, the R3C gating pore is closed at hyperpolarized membrane potentials and opens with channel activation. Negative conditioning pulses revealed time-dependent deactivation of the R3C gating pore at the most hyperpolarized potentials. Our results show sequential voltage dependence of activation of gating pore current from R1 to R3 and support stepwise outward movement of the substituted cysteines through the narrow portion of the gating pore that is sealed by the arginine side chains in the wild-type channel. This pattern of voltage dependence of gating pore current is consistent with a sliding movement of the S4 helix through the gating pore. Through comparison with high-resolution models of the voltage sensor of bacterial sodium channels, these results shed light on the structural basis for pathogenic gating pore currents in periodic paralysis syndromes.  相似文献   

4.
Associated with the opening and closing of the sodium channels of nerve membrane is a small component of capacitative current, the gating current. After termination of a depolarizing step the gating current and sodium current decay with similar time courses. Both currents decay more rapidly at relatively negative membrane voltages than at positive ones. The gating current that flows during a depolarizing step is diminished by a pre-pulse that inactivates the sodium permeability. A pre-pulse has no effect after inactivation has been destroyed by internal perfusion with the proteolytic enzyme pronase. Gating charge (considered as positive charge) moves outward during a positive voltage step, with voltage dependent kinetics. The time constant of the outward gating current is a maximum at about minus 10 mV, and has a smaller value at voltages either more positive or negative than this value.  相似文献   

5.
The aim of the present study was to provide a mechanistic insight into how phosphatase activity influences calcium-activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl- currents (I(ClCa)) were evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, I(ClCa) was evoked immediately upon membrane rupture but then exhibited marked rundown to approximately 20% of initial values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5'-(beta,gamma-imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min dialysis, I(ClCa) was approximately 100% of initial levels. I(ClCa) recorded with AMP-PNP-containing pipette solutions were significantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at negative potentials. The marked increase in I(ClCa) was due to a negative shift in the voltage dependence of activation and not due to an increase in the apparent binding affinity for Ca2+. Mathematical simulations were carried out based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in channel opening at fixed calcium but progressively greater "on" rates, and voltage-dependent closing steps ("off" rates). Our model reproduced well the Ca2+ and voltage dependence of I(ClCa) as well as its kinetic properties. The impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of the Ca2+-activated Cl- channel complex influences current generation dramatically through one or more critical voltage-dependent steps.  相似文献   

6.
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.  相似文献   

7.
The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail current time constant (+23.3 mV) and the gating charge vs. voltage relationship (+22.1 mV). A significantly smaller shift of +13.3 mV described the effect of pH 5.0 solution on the voltage dependence of steady state inactivation. Changes in the time course of gating current at low pH were complex and could not be described as a shift in voltage dependence. tau g, the time constant that describes the time course of the major component of gating charge movement, was slowed in pH 5.0 solution by a factor of approximately 3.5 for potentials from -60 to +45 mV. We conclude that the effects of low pH on Na channel gating cannot be attributed simply to a change in surface potential. Therefore, although it may be appropriate to describe the effect of low pH on some Na channel kinetic properties as a "shift" in voltage dependence, it is not appropriate to interpret such shifts as a measure of changes in surface potential. The maximum gating charge elicited from a holding potential of -150 mV was little affected by low pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.  相似文献   

10.
The effect of elevated divalent cation concentration on the kinetics of sodium ionic and gating currents was studied in voltage-clamped frog skeletal muscle fibers. Raising the Ca concentration from 2 to 40 mM resulted in nearly identical 30-mV shifts in the time courses of activation, inactivation, tail current decay, and ON and OFF gating currents, and in the steady state levels of inactivation, charge immobilization, and charge vs. voltage. Adding 38 mM Mg to the 2 mM Ca bathing a fiber produced a smaller shift of approximately 20 mV in gating current kinetics and the charge vs. voltage relationship. The results with both Ca and Mg are consistent with the hypothesis that elevated concentrations of these alkali earth cations alter Na channel gating by changing the membrane surface potential. The different shifts produced by Ca and Mg are consistent with the hypothesis that the two ions bind to fixed membrane surface charges with different affinities, in addition to possible screening.  相似文献   

11.
Pharmacological and kinetic analysis of K channel gating currents   总被引:3,自引:2,他引:1       下载免费PDF全文
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic currents with no effect on Na channel currents altered the component of gating current associated with K channels. At low concentrations (10-50 microM) the small, organic, dipolar molecule phloretin has several reported specific effects on K channels: it reduces K channel conductance, shifts the relationship between channel conductance and membrane voltage (Vm) to more positive potentials, and reduces the voltage dependence of the conductance-Vm relation. The K channel gating charge movements were altered in an analogous manner by 10 microM phloretin. We also measured the dominant time constants of the K channel ionic and gating currents. These time constants were similar over part of the accessible voltage range, but at potentials between -40 and 0 mV the gating current time constants were two to three times faster than the corresponding ionic current values. These features of K channel function can be reproduced by a simple kinetic model in which the channel is considered to consist of two, two-state, nonidentical subunits.  相似文献   

12.
FPL 64176 (FPL) is a nondihydropyridine compound that dramatically increases macroscopic inward current through L-type calcium channels and slows activation and deactivation. To understand the mechanism by which channel behavior is altered, we compared the effects of the drug on the kinetics and voltage dependence of ionic currents and gating currents. Currents from a homogeneous population of channels were obtained using cloned rabbit Ca(V)1.2 (alpha1C, cardiac L-type) channels stably expressed in baby hamster kidney cells together with beta1a and alpha2delta1 subunits. We found a striking dissociation between effects of FPL on ionic currents, which were modified strongly, and on gating currents, which were not detectably altered. Inward ionic currents were enhanced approximately 5-fold for a voltage step from -90 mV to +10 mV. Kinetics of activation and deactivation were slowed dramatically at most voltages. Curiously, however, at very hyperpolarized voltages (< -250 mV), deactivation was actually faster in FPL than in control. Gating currents were measured using a variety of inorganic ions to block ionic current and also without blockers, by recording gating current at the reversal potential for ionic current (+50 mV). Despite the slowed kinetics of ionic currents, FPL had no discernible effect on the fundamental movements of gating charge that drive channel gating. Instead, FPL somehow affects the coupling of charge movement to opening and closing of the pore. An intriguing possibility is that the drug causes an inactivated state to become conducting without otherwise affecting gating transitions.  相似文献   

13.
The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath, the reversal potential of whole-cell currents was governed by the prevailing Cl- equilibrium potential and could be fitted by the Goldman-Hodgkin-Katz equation with similar permeabilities for uninfected and beta-Gal cells. In the frequency range 0.12 < f < 300 Hz, the power density spectrum of whole-cell Cl- currents could be fitted by three Lorentzians. Independent of membrane potential, >50% of the total variance of whole-cell current fluctuations was accounted for by the low frequency Lorentzian (fc = 0.40 +/- 0.03 Hz, n = 6). Single-Cl- channels showed complex gating kinetics with long lasting (seconds) openings interrupted by similar long closures. In the open state, channels exhibited fast burst-like closures. Since the patches normally contained more than a single channel, it was not possible to measure open and closed dwell-time distributions for comparing single-Cl- channel activity with the kinetic features of whole-cell currents. However, the power density spectrum of Cl- currents of cell-attached and excised outside-out patches contained both high and low frequency Lorentzian components, with the corner frequency of the slow component (fc = 0.40 +/- 0.02 Hz, n = 4) similar to that of whole-cell current fluctuations. Chloride channels exhibited multiple conductance states with similar Goldman-Hodgkin-Katz-type rectification. Single-channel permeabilities covered the range from approximately 0.6.10(-14) cm5/s to approximately 6.10(-14) cm3/s, corresponding to a limiting conductance (gamma 150/150) of approximately 3.5 pS and approximately 35 pS, respectively. All states reversed near the same membrane potential, and they exhibited similar halide ion selectivity, P1 > PCl approximately PBr. Accordingly, Cl- current amplitudes larger than current flow through the smallest channel unit resolved seem to result from simultaneous open/shut events of two or more channel units.  相似文献   

14.
Nonlinear charge movement (gating current) was studied by the whole-cell patch clamp method using cultured 17-d-old embryonic chick heart cells. Na+ and Ca++ currents were blocked by the addition of 10 microM TTX and 3 mM CoCl2; Cs+ replaced K+ both intra- and extracellularly. Linear capacitive and leakage currents were subtracted by a P/5 procedure. The small size (15 microns in diameter) and the lack of an organized internal membrane system in these myocytes permits a rapid voltage clamp of the surface membrane. Ca++ channel gating currents were activated positive to -60 mV; the rising phase was not distorted due to the system response time. The addition of BAY K 8644 (10(-6) M) caused a shortening of the time to peak of the Ca++ gating current, and a negative shift in the isochronal Qon vs. Vm curve. Qmax was unchanged by BAY K 8644. The voltage-dependent shift produced by BAY K 8644 is similar to that produced by isoproterenol (Josephson, I.R., and N. Sperelakis. 1990. Biophys. J. 57:305a. [Abstr.]). The results suggest that the binding of BAY K 8466 to one or more of the Ca++ channel subunits alters the kinetics and shifts the voltage dependence of gating. These changes in the gating currents can explain the parallel changes in the macroscopic Ca++ currents.  相似文献   

15.
The mucosa that lines the airways is covered with a fluid film forming a hypophase between mucus and cell surface. To study the function of this epithelium aims at describing the mechanisms by which fluid is normally produced. Another goal to be pursued consists in looking for the origin of pathological situations, such as cystic fibrosis, in which the functioning of epithelial cell is altered. The elucidation of transport mechanisms present in the apical and in the basolateral membrane results in a conceptual model that illustrates the asymmetrical functioning of epithelial cells. Recent discoveries enlarge our understanding of membrane transport processes; in particular, a concerted, reciprocal regulation of the activity of both membranes was shown to be exerted via the intracellular composition. The tracheal epithelium absorbs Na+ and secretes Cl-. These two transports are active and electrogenic; their sum corresponds approximately to the short-circuit current measured in vitro. Na+ absorption is sensitive to amiloride from the luminal side and also to ouabain added to the serosal compartment. The process is a primary active transport, analogous to that found in amphibian epithelia or in mammalian colon. Cl- secretion is abolished by furosemide (or bumetanide), by ouabain or by Na+ suppression in the serosal incubation solution. The mechanism is a secondary active transport: Cl- influx across the basolateral membrane is coupled to Na+ (probably through Na+, K+, Cl- symport); energy is dissipated by the Na+-K+-ATPase localised in the basolateral membrane. Thus, Na+ is recirculated across that membrane by the pump activity, which maintains a favorable gradient for influx via the symport. Cl- efflux takes place by diffusion through the luminal membrane. This model applies to other epithelia in which Na+-coupled Cl- secretion was shown to take place. It is confirmed by isotopic fluxes measurements and by electrophysiologic properties of the apical and the basolateral membrane. Various agents are known to influence ion transports. In particular Cl- secretion is stimulated by substances that increase the intracellular concentration of cyclic AMP. At the membrane level, the number of active Cl- channels in the apical membrane is primarily controlled, then the basolateral membrane K+ permeability. Yet, species differences are worth to note: the trachea of the cow is barely sensitive to agents that exert a marked action on dog trachea. The tracheal epithelium is used as an experimental model for studying cystic fibrosis, a disease in which the apical membrane is almost devoid of functional Cl- channels, so that Cl- permeability is quite low.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A general mechanism for the physiological regulation of the activity of voltage-dependent Na+, Ca++, K+, and Cl channels by neurotransmitters in a variety of excitable cell types may involve a final common pathway of a cyclic AMP-dependent phosphorylation of the channel protein. The functional correlates of channel phosphorylation are known to involve a change in the probability of opening, and a negative or positive shift in the voltage dependence for activation of the conductance. The voltage dependence for activation appears to be governed by the properties of the charge movement of the voltage-sensing moiety of the channel. This study of the gating charge movement of cardiac Ca++ channels has revealed that isoproterenol or cAMP (via a presumed phosphorylation of the channel) speeds the kinetics of the Ca++ channel gating charge movement. These results suggest that the changes in the kinetics and voltage dependence of the cardiac calcium currents produced by beta-adrenergic stimulation are initiated, in part, by parallel changes in the gating charge movement.  相似文献   

17.
We introduce a Markov model for the gating of membrane channels. The model features a possible solution to the so-called gating current paradox, namely that the bell-shaped curve that describes the voltage dependence of the kinetics is broader than expected from, and shifted relative to, the sigmoidal curve that describes the voltage dependence of the activation. The model also predicts some temperature dependence of this shift, but presence of the latter has not been tested experimentally so far.  相似文献   

18.
The cellular mechanism of active chloride secretion, as it is manifested in the intestine and trachea, appears to possess the following elements: (1)NaCl cl-transport across the basolateral membrane; (2) Cl- accumulation in the cell above electrochemical equilibrium due to the Na+ gradient; (3) a basolateral Na+-K+ pump that maintains the Na+ gradient; (4) a hormone-regulated Cl- permeability in the apical membrane; (5) passive Na/ secretion through a paracellular route, driven by the transepithelial potential difference; and (6) an increase in basolateral membrane K+ permeability occurring in conjunction with an increase in Na+-K+ pump rate. Electrophysiological studies in canine trachea support this model. Adrenalin, a potent secretory stimulus in that tissue, increases apical membrane conductance through a selective increase in Cl- permeability. Adrenalin also appears to increase basolateral membrane K+ permeability. Whether or not adrenalin also increases paracellular Na+ permeability is unclear. Some of the testable implications of the above secretion model are discussed.  相似文献   

19.
Anion channels in the plasma membrane of both plant and animal cells participate in a number of important cellular functions such as volume regulation, trans-epithelial transport, stabilization of the membrane potential and excitability. Only very recently attention has turned to the presence of anion channels in higher plant cells. A dominant theme among recent discoveries is the role of Ca2+ in activating or modulating channel current involved in signal transduction. The major anion channel of stomatal guard cell protoplasts is a 32-40 pS channel which is highly selective for anions, in particular NO3-, Cl- and malate. These channels are characterized by a steep voltage dependence. Anion release is elicited upon depolarization and restricted to a narrow voltage span of -100 mV to the reversal potential of anions. During prolonged activation the current slowly inactivates. A rise in cytoplasmic calcium in the presence of nucleotides evokes activation of the anion channels. Following activation they catalyse anion currents 10-20 times higher than in the inactivated state thereby shifting the resting potential of the guard cell from a K(+)-conducting to an anion-conducting state. Patch-clamp studies have also revealed that growth hormones directly affect voltage-dependent activity of the anion channel in a dose-dependent manner. Auxin binding resulted in a shift of the activation potential towards the resting potential. Auxin-dependent gating of the anion channel is side- and hormone-specific. Its action is also channel-specific as K+ channels coexisting in the same membrane patch were insensitive to this ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Isolated frog skins were voltage clamped at transepithelial potentials (Vt) ranging from -60 mV to 60 mV to measure transepithelial 36Cl- fluxes from the apical to the basolateral bathing solution (J13) and in the opposite direction (J31). The potential dependence of fluxes obtained in Na+-free choline Ringer's indicates the presence of conductive and nonconductive components that probably correspond to fluxes through paracellular and cellular pathways, respectively. Rectification of fluxes with reversal of the potential reflects a structural asymmetry, presumably in surface charge density. The data are consistent with a charge density of one negative charge per 280 A2 on the apical side. A new model for passive Cl- transport was developed that includes surface charge asymmetry and specifically accounts for the observed variation of conductance with potential. In normal frog Ringer's, J13 was larger than J31 at zero potential (active Cl- transport), J13 rose exponentially with increasing positive potential to reach a maximum at 40 mV (approximately open-circuit), and the predicted partial Cl- conductance exceeded the measured conductance leading to the conclusion that when J13 is largely driven by Na+ transport, much of the coupling occurs via nonconductive pathways. Theophylline stimulates Cl- transport that also occurs via nonconductive pathways as Vt becomes more positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号