首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3.  相似文献   

2.
Phosphorylation is one of the most common forms of protein modification. The most frequent targets for protein phosphorylation in eukaryotes are serine and threonine residues, although tyrosine residues also undergo phosphorylation. Many of the currently applied methods for the detection and localization of protein phosphorylation sites are mass spectrometry-based and are biased against the analysis of tyrosine-phosphorylated residues because of the stability and low reactivity of phosphotyrosines. To overcome this lack of sensitive methods for the detection of phosphotyrosine-containing peptides, we have recently developed a method that is not affected by the more predominant threonine or serine phosphorylation within cells. It is based on the specific detection of immonium ion of phosphotyrosine at 216.043 Da and does not require prior knowledge of the protein sequence. In this report, we describe the first application of this new method in a proteomic strategy. Using anti-phosphotyrosine antibodies for immunoprecipitation and one-dimensional gel electrophoresis, we have identified 10 proteins in the epidermal growth factor receptor signaling pathway, of which 8 have been shown previously to be involved in epidermal growth factor signaling. Most importantly, in addition to several known tyrosine phosphorylation sites, we have identified five novel sites on SHIP-2, Hrs, Cbl, STAM, and STAM2, most of which were not predicted to be phosphorylated. Because of its sensitivity and selectivity, this approach will be useful in proteomic approaches to study tyrosine phosphorylation in a number of signal transduction pathways.  相似文献   

3.
The major determinants of receptor tissue tyrosine kinase (RTK) signaling specificity have been proposed to be Src homology 2 (SH2) binding sites, phosphotyrosine-containing oligopeptides in the cytoplasmic domain of the receptor. The Caenorhabditis elegans epidermal growth factor receptor homologue LET-23 has multiple functions during development and has eight potential SH2-binding sites in a region carboxyl terminal to its kinase domain. By analyzing transgenic nematodes for three distinct LET-23 functions, we show that six of eight potential sites function in vivo and that they are required for most, but not all, of LET-23 activity. A single site is necessary and sufficient to promote wild-type fertility. Three other sites activate the RAS pathway and are involved only in viability and vulval differentiation. A fifth site is promiscuous and can mediate all three LET-23 functions. An additional site mediates tissue-specific negative regulation. Putative SH2 binding sites are thus key effectors of both cell-specific and negative regulation in an intact organism. We suggest two distinct mechanisms for tissue-specific RTK-mediated signaling. A positive mechanism would promote RTK function through effectors present only in certain cell types. A negative mechanism would inhibit RTK function through tissue-specific negative regulators.  相似文献   

4.
The epidermal growth factor receptor family tyrosine kinases transduce signals for cell proliferation and migration and contribute to tumorigenesis. A recent extensive research has highlighted the major roles of the negative regulators of complex epidermal growth factor receptor signaling networks. These regulators fine-tune signaling under physiological conditions. When their expression is downregulated, the resultant aberrant epidermal growth factor receptor signaling may promote cell proliferation and migration, leading to increased tumorigenesis. In this paper, I review specific feedback inhibitors that target epidermal growth factor receptors preferentially, via multiple modes of action. The inhibitors include mitogen-inducible gene-6 (Mig-6)/receptor-associated late transducer (RALT)/Gene 33, fibroblast growth factor receptor substrate 2beta (FRS2beta)/suc1-associated neurotrophic factor target-2 (SNT-2)/FRS3, suppressor of cytokine signaling 3 (SOCS3)/SOCS4/SOCS5, and leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1). Although only fragmentary evidence is available regarding these inhibitors, they might be useful as cancer biomarkers, and the development of drugs that target them would certainly advance personalized medicine in the near future.  相似文献   

5.
Activation of the extracellular calcium-sensing receptor (CaR) stimulates mitogen-activated protein kinases to upregulate the synthesis and secretion of parathyroid hormone related peptide (PTHrP) from cells expressing the CaR heterologously or endogenously. The current experiments demonstrate that this occurs because CaR activation "transactivates" the EGF receptor (EGFR). Time dependent increases in tyrosine phosphorylation of the EGFR after addition of extracellular calcium ([Ca2+]o, 3 mM) occurred in stably CaR-transfected HEK293 cells but not in non-transfected HEK293 cells. AG1478, an EGFR kinase inhibitor, prevented the CaR-mediated increases of pERK and PTHrP release, while AG1296, a PDGFR kinase inhibitor, had no effect. Inhibitors of matrix metalloproteinase and heparin bound-EGF prevented the CaR-mediated increases of pERK and PTHrP, consistent with a "triple-membrane-spanning signaling" requirement for transactivation of the EGFR by the CaR. Proximal and distal signal transduction cascades activated by the CaR may reflect transactivation of the EGFR by the extracellular calcium-sensing receptor.  相似文献   

6.
7.
Cbl proteins function as ubiquitin protein ligases for the activated epidermal growth factor receptor and, thus, negatively regulate its activity. Here we show that Cbl-b is ubiquitinated and degraded upon activation of the receptor. Epidermal growth factor (EGF)-induced Cbl-b degradation requires intact RING finger and tyrosine kinase binding domains and requires binding of the Cbl-b protein to the activated EGF receptor (EGFR). Degradation of both the EGFR and the Cbl-b protein is blocked by lysosomal and proteasomal inhibitors. Other components of the EGFR-signaling complex (i.e. Grb2 and Shc) are also degraded in an EGF-induced Cbl-b-dependent fashion. Our results suggest that the ubiquitin protein ligase function of Cbl-b is regulated by coordinated degradation of the Cbl-b protein along with its substrate. Furthermore, the data demonstrate that Cbl-b mediates degradation of multiple proteins in the EGFR-signaling complex.  相似文献   

8.
9.
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is organized by scaffold and adaptor proteins, which have specific subcellular distribution. On a way from the plasma membrane to the lysosome EGFRs are still in their active state and can signal from distinct subcellular locations. To identify organelle-specific targets of EGF receptor signaling on endosomes a combination of subcellular fractionation, two-dimensional DIGE, fluorescence labeling of phosphoproteins, and MALDI-TOF/TOF mass spectrometry was applied. All together 23 EGF-regulated (phospho)proteins were identified as being differentially associated with endosomal fractions by functional organelle proteomics; among them were proteins known to be involved in endosomal trafficking and cytoskeleton rearrangement (Alix, myosin-9, myosin regulatory light chain, Trap1, moesin, cytokeratin 8, septins 2 and 11, and CapZbeta). Interestingly R-Ras, a small GTPase of the Ras family that regulates cell survival and integrin activity, was associated with endosomes in a ligand-dependent manner. EGF-dependent association of R-Ras with late endosomes was confirmed by confocal laser scanning immunofluorescence microscopy and Western blotting of endosomal fractions. EGFR tyrosine kinase inhibitor gefitinib was used to confirm EGF-dependent regulation of all identified proteins. EGF-dependent association of signaling molecules, such as R-Ras, with late endosomes suggests signaling specification through intracellular organelles.  相似文献   

10.
Suppressors of cytokine signaling (SOCS) are Src homology-2-containing proteins originally identified as negative regulators of cytokine signaling. Accumulating evidence indicates a role for SOCS proteins in the regulation of additional signaling pathways including receptor tyrosine kinases. Notably, SOCS36E, the Drosophila ortholog of mammalian SOCS5, was recently implicated as a negative regulator of the Drosophila ortholog of EGFR. In this study, we aimed at characterizing the role of SOCS5 in the negative regulation of EGFR. Here we show that the expression of SOCS5 and its closest homolog SOCS4 is elevated in cells following treatment with EGF, similar to several negative feedback regulators of EGFR whose expression is up-regulated upon receptor activation. The expression of SOCS5 led to a marked reduction in EGFR expression levels by promoting EGFR degradation. The reduction in EGFR levels and EGF-induced signaling in SOCS5-expressing cells requires both the Src homology-2 and SOCS box domains of SOCS5. Interestingly, EGFR is degraded by SOCS5 prior to EGF treatment in a ligand- and c-Cbl-independent manner. SOCS5 can associate with EGFR and can also bind the ElonginBC protein complex via its SOCS box, which may recruit an E3 ubiquitin ligase to promote EGFR degradation. Thus, we have characterized a novel function for SOCS5 in regulating EGFR and discuss its potential role in controlling EGFR homeostasis.  相似文献   

11.
Relay of information from the extracellular environment into the cell often results from a peptide growth factor binding to its cognate cell surface receptor; this event is an integral mechanism by which many cellular functions occur, including cell growth, motility, and survival. In recent years, however, this requirement for ligand binding has been shown to be surpassed by several distinct mechanisms, including cell surface receptor cross-talk (e.g., between epidermal growth factor receptor [EGFR] and G-coupled receptors), receptor-extracellular matrix interactions (e.g., EGFR: integrin complexes), and finally by structural mutations within the receptor itself. While all of these pathways result in so-called ligand-independent signaling by the EGF receptor, to date, only structural mutations in the receptor have been shown to result in qualitative changes in downstream targets of the receptor, which specifically result in oncogenic signaling, transformation, and tumorigenicity. In this review, we describe aspects of the known signaling properties of the retroviral oncogene v-ErbB as a model of ligand-independent oncogenic signaling, and compare these properties to results emerging from ongoing studies on structurally related EGF receptor mutants originally identified in human tumors. A better understanding of the signaling pathways used by these uniquely oncogenic receptor tyrosine kinase mutants may ultimately reveal new targets for the development of novel therapeutics selective for the inhibition of tumor cell growth.  相似文献   

12.
Treatment of Swiss 3T3 fibroblasts with basic fibroblast growth factor (bFGF) lead to a rapid reduction in epidermal growth factor (EGF) binding and a slower inhibition of EGF receptor autophosphorylation. The reduction in binding was due to a complete loss of the highest affinity EGF binding sites and a reduction in the lower affinity binding sites. Neither the inhibition of EGF binding nor the inhibition of EGF receptor autophosphorylation required protein kinase C. Treatment of cells with bFGF stimulated the phosphorylation of the EGF receptor, which persisted for several hours. The inhibition of EGF receptor autophosphorylation by bFGF was reduced in the presence of cycloheximide. However, cycloheximide had no effect on the reduction of EGF binding by bFGF. In contrast to these results with Swiss 3T3 fibroblasts, treatment of PC12 cells with bFGF lead to a reduction in EGF binding but no inhibition of EGF receptor autophosphorylation. Thus inhibited of EGF receptor autophosphorylation and inhibition of EGF binding can be uncoupled. © 1993 Wiley-Liss, Inc.  相似文献   

13.
14.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

15.
Cycloheximide is the most common protein synthesis inhibitor, and is believed to specifically inhibit the cytoplasmic protein synthesis. Here we demonstrate that cycloheximide induces internalization and redistribution of EGF receptor to early endosomes in HeLa cells independent of receptor tyrosine phosphorylation, but dependent on p38 MAPK activity. Degradation of EGF receptor or its downstream effectors was not observed. EGF-induced activation of ERK1/2 was inhibited upon pre-treatment with cycloheximide, but did not activate JNK. The observed effects of treatment with cycloheximide alone are significant and therefore results involving the use of cycloheximide for inhibition of protein synthesis must be interpreted with caution.

Structured summary of protein interactions

EEA1 and EGFRcolocalize by fluorescence microscopy (View interaction).  相似文献   

16.
17.
The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.  相似文献   

18.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号