首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.  相似文献   

2.
Up-regulation of cell cycle proteins occurs in both mitotic and post-mitotic neural cells after central nervous system (CNS) injury in adult animals. In mitotic cells, such as astroglia and microglia, they induce proliferation, whereas in post-mitotic cells such as neurons they initiate caspase-related apoptosis. We recently reported that early central administration of the cell cycle inhibitor flavopiridol after experimental traumatic brain injury (TBI) significantly reduced lesion volume, scar formation and neuronal cell death, while promoting near complete behavioral recovery. Here we show that in primary neuronal or astrocyte cultures structurally different cell cycle inhibitors (flavopiridol, roscovitine, and olomoucine) significantly reduce up-regulation of cell cycle proteins, attenuate neuronal cell death induced by etoposide, and decrease astrocyte proliferation. Flavopiridol, in a concentration dependent manner, also attenuates proliferation/activation of microglia. In addition, we demonstrate that central administration of flavopiridol improves functional outcome in dose-dependent manner after fluid percussion induced brain injury in rats. Moreover, delayed systemic administration of flavopiridol significantly reduces brain lesion volume and edema development after TBI. These data provide further support for the therapeutic potential of cell cycle inhibitors for the treatment of clinical CNS injury and that protective mechanisms likely include reduction of neuronal cell death, inhibition of glial proliferation and attenuation of microglial activation.  相似文献   

3.
Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology.  相似文献   

4.
The present investigation examined the neural sites and mechanisms of opiate inhibition of female sexual behavior. Systemic administration of morphine (10 mg/kg) significantly reduced ovarian steroid-induced estrous behavior in female rats. This behavioral inhibition was prevented when the opiate receptor antagonist naloxone (5 mg/kg) was administered 30 min prior to morphine. Bilateral infusion of morphine directly into the ventromedial hypothalamus (VMH) also inhibited hormone-dependent estrous behavior for at least 2 hr. Furthermore, naloxone infusion into the VMH 20 min before behavior testing reduced the inhibitory effects of systemically administered morphine on lordosis. These results suggest that morphine may inhibit female sexual behavior by acting directly on the VMH, the primary site at which ovarian steroids facilitate this behavior. In a separate experiment we used in vivo brain microdialysis to test the hypothesis that morphine inhibits lordosis by interfering with norepinephrine (NE) neurotransmission in the VMH. In control rats, the onset of mating was associated with increased NE release in the VMH. Morphine-treated animals displayed neither behavioral estrus nor elevated NE release from the VMH when tested with stimulus males. These data are consistent with the hypothesis that morphine suppresses NE release in the VMH. Nevertheless, mechanisms other than or in addition to attenuation of hypothalamic NE release may contribute to the inhibitory effects of morphine on lordosis.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) plays an essential regulatory role in the survival and differentiation of various neural cell types during brain development and after injury. In this study, we used neural stem cells (NSCs) genetically modified to encode BDNF gene (BDNF/NSCs) and naive NSCs transplantation and found that BDNF/NSCs significantly improved neurological motor function following traumatic brain injury (TBI) on selected behavioral tests. Our data clearly demonstrate that the transplantation of BDNF/NSCs causes overexpression of BDNF in the brains of TBI rats. The number of surviving engrafted cells and the proportion of engrafted cells with a neuronal phenotype were significantly greater in BDNF/NSCs than in naive NSCs-transplanted rats. The expression of pre- and post-synaptic proteins and a regeneration-associated gene in the BDNF/NSCs-transplanted rats was significantly increased compared to that in NSCs-transplanted rats, especially at the early stage of post-transplantation. These data suggest that neurite growth and overexpression of synaptic proteins in BDNF/NSCs-transplanted rats are associated with the overexpression of BDNF, which is hypothesized to be one of the mechanisms underlying the improved functional recovery in motor behavior at the early stage of cell transplantation following TBI. Therefore, the protective effect of the BDNF-modified NSCs transplantation is greater than that of the naive NSCs transplantation.  相似文献   

6.
The effect of continuous treatment with the selective 5-HT1A agonist gepirone upon 5-HT2-mediated behavior and cortical 5-HT2 receptor binding sites was examined in naive rats or rats receiving noradrenergic (DSP4) or serotonergic (5,7-DHT) lesions. Continuous administration of gepirone in non-lesioned rats for 3, 7, or 14 days enhanced the head shake response to the 5-HT agonist quipazine. This enhancement of 5-HT2-mediated behavior occurred despite concomitant down-regulation of cortical 5-HT2 binding sites. However, 28 days of gepirone administration significantly reduced behavioral responsiveness to quipazine. The gepirone-induced facilitation of 5-HT2-mediated behavior observed after 7 days of continuous treatment was blocked in both DSP4 and 5,7-DHT-lesioned rats. However, both noradrenergic and serotonergic denervation failed to modify the down-regulation of 5-HT2 receptor binding sites produced by continuous gepirone administration. These results suggest that the curious dissociation of behavioral and biochemical indices of 5-HT2 receptor function produced by continuous gepirone treatment may be the result of a dual yet separate action of the drug on central presynaptic noradrenergic and serotonergic mechanisms and postsynaptic 5-HT receptors. Furthermore, the postsynaptic action of gepirone which reduces the maximal number of cortical 5-HT2 receptor binding sites may be the result of gepirone's agonist action at postsynaptic 5-HT1A receptors.  相似文献   

7.
Impulsive behaviors are closely linked to drug use and abuse, both as contributors to use and as consequences of use. Trait impulsivity is an important determinant of drug use during development, and in adults momentary 'state' increases in impulsive behavior may increase the likelihood of drug use, especially in individuals attempting to abstain. Conversely, acute and chronic effects of drug use may increase impulsive behaviors, which may in turn facilitate further drug use. However, these effects depend on the behavioral measure used to assess impulsivity. This article reviews data from controlled studies investigating different measures of impulsive behaviors, including delay discounting, behavioral inhibition and a newly proposed measure of inattention. Our findings support the hypothesis that drugs of abuse alter performance across independent behavioral measures of impulsivity. The findings lay the groundwork for studying the cognitive and neurobiological substrates of impulsivity, and for future studies on the role of impulsive behavior as both facilitator and a result of drug use.  相似文献   

8.
Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with implications for anxiety and alcohol use disorders.  相似文献   

9.
Methyl parathion increases neuronal activities in the rat locus coeruleus   总被引:3,自引:1,他引:2  
Exposure to organophosphate insecticides induces undesirable behavioral changes in humans, including anxiety and irritability, depression, cognitive disturbances and sleep disorders. Little information currently exists concerning the neural mechanisms underlying such behavioral changes. The brain stem locus coeruleus (LC) could be a mediator of organophosphate insecticide-induced behavioral toxicities since it contains high levels of acetylcholinesterase and is involved in the regulation of the sleep-wake cycle, attention, arousal, memory, and pathological processes, including anxiety and depression. In the present study, using a multi-wire recording technique, we examined the effects of methyl parathion, a commonly used organophosphate insecticide, on the firing patterns of LC neurons in rats. Systemic administration of a single dose of methyl parathion (1 mg/kg, i.v.) increased the spontaneous firing rates of LC neurons by 240% but did not change the temporal relationships among the activities of multiple LC neurons. This dose of methyl parathion induced a 50% decrease in blood acetylcholinesterase activity and a 48% decrease in LC acetylcholinesterase activity. The methyl parathion-induced excitation of LC neurons was reversed by administration of atropine sulfate, a muscarinic receptor antagonist, indicating an involvement of muscarinic receptors. The methyl parathion-induced increase in LC neuronal activity returned to normal within 30 min while the blood acetylcholinesterase activity remained inhibited for over 1 h. These data indicate that methyl parathion treatment can elicit excitation of LC neurons. Such excitation could contribute to the neuronal basis of organophosphate insecticide-induced behavioral changes in human.  相似文献   

10.
Impaired cognitive processing is a hallmark of addiction. In particular, deficits in inhibitory control can propel continued drug use despite adverse consequences. Clinical evidence shows that detoxified alcoholics exhibit poor inhibitory control in the Continuous Performance Task (CPT) and related tests of motor impulsivity. Animal models may provide important insight into the neural mechanisms underlying this consequence of chronic alcohol exposure though pre-clinical investigations of behavioral inhibition during alcohol abstinence are sparse. The present study employed the rat 5 Choice-Continuous Performance Task (5C-CPT), a novel pre-clinical variant of the CPT, to evaluate attentional capacity and impulse control over the course of protracted abstinence from chronic intermittent alcohol consumption. In tests conducted with familiar 5C-CPT conditions EtOH-exposed rats exhibited impaired attentional capacity during the first hours of abstinence and impaired behavioral restraint (increased false alarms) during the first 5d of abstinence that dissipated thereafter. Subsequent tests employing visual distractors that increase the cognitive load of the task revealed significant increases in impulsive action (premature responses) at 3 and 5 weeks of abstinence, and the emergence of impaired behavioral restraint (increased false alarms) at 7 weeks of abstinence. Collectively, these findings demonstrate the emergence of increased impulsive action in alcohol-dependent rats during protracted alcohol abstinence and suggest the 5C-CPT with visual distractors may provide a viable behavioral platform for characterizing the neurobiological substrates underlying impaired behavioral inhibition resulting from chronic intermittent alcohol exposure.  相似文献   

11.
Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50–60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7–9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.  相似文献   

12.
Methyllycaconitine (MLA) is reported to be a selective antagonist for the nicotinic acetylcholine receptor alpha7 subtype and has been found in animal behavioral studies to reduce nicotine self-administration and attenuate nicotine withdrawal symptoms. While MLA crosses the blood-brain barrier (BBB), no studies have assessed brain uptake in animals subjected to chronic nicotine exposure. Given that chronic nicotine administration has been reported to alter BBB parameters that may affect the kinetic BBB passage of MLA, we evaluated MLA brain uptake in naive and S-(-)nicotine-exposed rats (4.5 mg/kg/day for 28 days; osmotic minipumps) using in situ rat brain perfusions. Our results demonstrate that in situ(3)H-MLA brain uptake rates in naive animals approximate to intravenous kinetic data (K(in), 3.24 +/- 0.71 x 10(-4) mL/s/g). However, 28-day nicotine exposure diminished (3)H-MLA brain uptake by approximately 60% (K(in), 1.29 +/- 0.4 x 10(-4) mL/s/g). This reduction was not related to nicotine-induced (3)H-MLA brain efflux or BBB transport alterations. Similar experiments also demonstrated that the passive permeation of (14)C-thiourea was diminished approximately 24% after chronic nicotine exposure. Therefore, it appears that chronic nicotine exposure diminishes the blood-brain passive diffusion of compounds with very low extraction rates (i.e. permeability-limited compounds). These findings imply that the pharmacokinetics of neuropharmaceutical agents that are permeability limited may need to be re-evaluated in individuals exposed to nicotine.  相似文献   

13.
We have previously shown that behavioral changes induced by cannabinoid were due to an elevation of prostaglandin E2 (PGE2) via the arachidonic acid cascade in the brain. In the present study, we investigated the participation of the prostanoid EP3 receptor, the target of PGE2 in the brain, in behavioral suppression induced by Delta8-tetrahydrocannabinol (Delta8-THC), an isomer of the naturally occurring Delta9-THC, using a one-lever operant task in rats. Intraperitoneal administration of Delta8-THC inhibited the lever-pressing behavior, which was significantly antagonized by both the selective cannabinoid CB1 receptor antagonist SR141716A and the cyclooxygenase inhibitor diclofenac. Furthermore, intracerebroventricular (i.c.v.) administration of PGE2 significantly inhibited the lever-pressing performance similar to Delta8-THC. Prostanoid EP3 receptor antisense-oligodeoxynucleotide (AS-ODN; twice a day for 3 days, i.c.v.) significantly decreased prostanoid EP3 receptor mRNA levels as determined by the RT-PCR analysis in the cerebral cortex, hippocampus and midbrain. AS-ODN also antagonized the PGE2-induced suppression of the lever pressing. In the same way, the suppression of lever-pressing behavior by Delta8-THC was significantly improved by AS-ODN. It is concluded that the suppression of lever-pressing behavior by cannabinoid is due to activation of the prostanoid EP3 receptor through an elevation of PGE2 in the brain.  相似文献   

14.
Previous observations have indicated that specific behavioral responses to anxiogenic stimuli emerge over adolescent development in male rats and that gonadal androgens during puberty are essential for this emergence. The objective of the current study was to evaluate mechanisms via which androgens might be organizing the brain during adolescence for appropriate mature adaptive responses. Male rats were exposed to fadrozole (an aromatase inhibitor, 5 mg/kg), flutamide (an androgen receptor antagonist, 10 mg/kg), or MK-434 (a 5 alpha-reductase inhibitor, 10 mg/kg) from day 29 to 60 and tested for environment-specific social interaction (SI) at 60 days of age. The emergence of adult-typical SI was impaired by exposure to the aromatase inhibitor and to the antiandrogen, whereas exposure to the 5 alpha-reductase inhibitor was without effect. Peripheral indices of drug effects indicated that the respective mechanisms had been altered by the different compounds. These results suggest that testosterone induction of aromatase is critical for the organization of mature SI behavior in male rats over adolescent development.  相似文献   

15.
Heroin produced antinociception in the tail flick test through mu receptors in the brain of ICR and CD-1 mice, a response inhibited by 3-O-methylnaltrexone. Tolerance to morphine was produced by subcutaneous morphine pellet implantation. By the third day, the heroin response was produced through delta opioid receptors. The response was inhibited by simultaneous intracerebroventricular (i.c. v.) administration of naltrindole, a delta opioid receptor antagonist. More specifically, delta1 rather than delta2 receptors were involved because 7-benzylidenenaltrexone, a delta1 receptor antagonist, inhibited but naltriben, a delta2 antagonist, did not. Also, antinociception produced by i.c.v. heroin was inhibited by intrathecal administration of bicuculline and picrotoxin consistent with the concept that delta1 receptors in the brain mediated the antinociceptive response through descending neuronal pathways to the spinal cord to activate GABAA and GABAB receptors rather than spinal alpha2-adrenergic and serotonergic receptors activated originally by the mu agonist action in naive mice. The mu response of 6-monoacetylmorphine, a metabolite of heroin, was changed by morphine pellet implantation to a delta2 response (inhibited by naltriben but not 7-benzylidenenaltrexone). The agonist action of morphine in these morphine-tolerant mice remained mu. Thus, the opioid receptor selectivity of heroin and 6-monoacetylmorphine in the brain is changed by production of tolerance to morphine. Such a change explains how morphine tolerant mice are not cross-tolerant to heroin.  相似文献   

16.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

17.
Steinbeis N  Bernhardt BC  Singer T 《Neuron》2012,73(5):1040-1051
Human social exchange is often characterized by conflicts of interest requiring strategic behavior for their resolution. To investigate the development of the cognitive and neural mechanisms underlying strategic behavior, we studied children's decisions while they played two types of economic exchange games with differing demands of strategic behavior. We show an increase of strategic behavior with age, which could not be explained by age-related changes in social preferences but instead by developmental differences in impulsivity and associated brain functions of the left dorsolateral prefrontal cortex (DLPFC). Furthermore, observed differences in cortical thickness of lDLPFC were predictive of differences in impulsivity and strategic behavior irrespective of age. We conclude that egoistic behavior in younger children is not caused by a lack of understanding right or wrong, but by the inability to implement behavioral control when tempted to act selfishly; a function relying on brain regions maturing only late in ontogeny.  相似文献   

18.
The orbitofrontal cortex (OFC) and piriform cortex are involved in encoding the predictive value of olfactory stimuli in rats, and neural responses to olfactory stimuli in these areas change as associations are learned. This experience-dependent plasticity mirrors task-related changes previously observed in mesocortical dopamine neurons, which have been implicated in learning the predictive value of cues. Although forms of associative learning can be found at all ages, cortical dopamine projections do not mature until after postnatal day 35 in the rat. We hypothesized that these changes in dopamine circuitry during the juvenile and adolescent periods would result in age-dependent differences in learning the predictive value of environmental cues. Using an odor-guided associative learning task, we found that adolescent rats learn the association between an odor and a palatable reward significantly more slowly than either juvenile or adult rats. Further, adolescent rats displayed greater distractibility during the task than either juvenile or adult rats. Using real-time quantitative PCR and immunohistochemical methods, we observed that the behavioral deficit in adolescence coincides with a significant increase in D1 dopamine receptor expression compared to juvenile rats in both the OFC and piriform cortex. Further, we found that both the slower learning and increased distractibility exhibited in adolescence could be alleviated by experience with the association task as a juvenile, or by an acute administration of a low dose of either the dopamine D1 receptor agonist SKF-38393 or the D2 receptor antagonist eticlopride. These results suggest that dopaminergic modulation of cortical function may be important for learning the predictive value of environmental stimuli, and that developmental changes in cortical dopaminergic circuitry may underlie age-related differences in associative learning.  相似文献   

19.
Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol.  相似文献   

20.
Both impulsivity in operant tasks and locomotor activity in a novel open field are known to predict the development of addiction-related behavior in rodents. In this study, we investigated to what extent impulsivity in the five-choice serial reaction time task and various measures of novelty exploration are controlled by shared genetic and environmental factors in 12 different inbred mouse strains. No genetic correlation was observed between the level of impulsivity and levels of activity, a low correlation was observed with traditional measures of anxiety-like behavior (impulsive strains tend to be less anxious) and a highly significant correlation was found between impulsivity and specific aspects of movement. Furthermore, we found that impulsivity and all measures of novelty exploration were under control of different environmental factors. Interestingly, in the dorsal medial prefrontal cortex, a brain region involved in impulsivity and activity in novelty exploration tests; these behavioral measures correlated with the expression of different genes (respectively, Frzb , Snx5, BC056474 and the previously identified Glo1 ). Taken together, our study shows that impulsivity and activity in novelty exploration tests are genetically and environmentally distinct, suggesting that mouse models of these behaviors provide complementary insights into the development of substance abuse disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号