首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

2.
3.
4.
Transposon insertions in Geobacter sulfurreducens GSU1501, part of an ATP-dependent exporter within an operon of polysaccharide biosynthesis genes, were previously shown to eliminate insoluble Fe(III) reduction and use of an electrode as an electron acceptor. Replacement of GSU1501 with a kanamycin resistance cassette produced a similarly defective mutant, which could be partially complemented by expression of GSU1500 to GSU1505 in trans. The Δ1501 mutant demonstrated limited cell-cell agglutination, enhanced attachment to negatively charged surfaces, and poor attachment to positively charged poly-d-lysine- or Fe(III)-coated surfaces. Wild-type and mutant cells attached to graphite electrodes, but when electrodes were poised at an oxidizing potential inducing a positive surface charge (+0.24 V versus the standard hydrogen electrode [SHE]), Δ1501 mutant cells detached. Scanning electron microscopy revealed fibrils surrounding wild-type G. sulfurreducens which were absent from the Δ1501 mutant. Similar amounts of type IV pili and pilus-associated cytochromes were detected on both cell types, but shearing released a stable matrix of c-type cytochromes and other proteins bound to polysaccharides. The matrix from the mutant contained 60% less sugar and was nearly devoid of c-type cytochromes such as OmcZ. The addition of wild-type extracellular matrix to Δ1501 cultures restored agglutination and Fe(III) reduction. The polysaccharide binding dye Congo red preferentially bound wild-type cells and extracellular matrix material over mutant cells, and Congo red inhibited agglutination and Fe(III) reduction by wild-type cells. These results demonstrate a crucial role for the xap (extracellular anchoring polysaccharide) locus in metal oxide attachment, cell-cell agglutination, and localization of essential cytochromes beyond the Geobacter outer membrane.  相似文献   

5.
The source of carbon and nitrogen as well as pH of medium influence the possibility of synthesis of the exocellular heteropolysaccharide of Mycobacterium cyaneum and the quantitative harvest of glucan but not its monomer composition. The conditions of mycobacterial growth and glucan synthesis usually do not coincide.  相似文献   

6.
To obtain a fundamental understanding of the population behaviour of Acidithiobacillus ferrooxidans at chalcopyrite and pyrite surfaces, the early stage attachment behaviour and biofilm formation by this bacterium on chalcopyrite (CuFeS2) and pyrite (FeS2) were studied by optical microscopy, Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The results indicate there was no significant difference in selectivity of bacterial attachment between chalcopyrite and pyrite. However, the result of ToF-SIMS analysis suggests that the surface of the pyrite was covered more extensively by biofilm than that of the chalcopyrite, which may indicate more extracellular polymeric substances (EPS) formation by bacterial cells growing on pyrite. EBSD and optical image analysis indicated that selectivity of bacterial attachment to chalcopyrite was not significantly affected by crystal orientation. The results also suggest that the bacterial population in defective areas of chalcopyrite was significantly higher than on the polished surfaces.  相似文献   

7.
Many bacteria utilize sophisticated regulatory systems to ensure that some functions are only expressed when a particular population density has been reached. The term 'quorum-sensing' has been coined to describe this form of density-dependent gene regulation which relies on the production and perception of small signal molecules by bacterial cells. As in many pathogenic bacteria the production of virulence factors is quorum-sensing regulated, it has been suggested that this form of gene regulation allows the bacteria to remain invisible to the defence systems of the host until the population is sufficiently large to successfully establish the infection. Here we present first evidence that polyphenolic compounds can interfere with bacterial quorum-sensing. Since polyphenols are widely distributed in the plant kingdom, they may be important for promoting plant fitness.  相似文献   

8.
9.
Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25 degrees C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 10(8) CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 10(2) CFU/cm(2)) than in a batch system (reaching 10(7) CFU/cm(2)), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.  相似文献   

10.
Deposition rates of Pseudomonas putida and Hyphomicrobium ZV620 onto glass and biofilm surfaces were quantified. Both species deposited to glass at a much slower rate than to biofilm. A definite bias by depositing cells for biofilms of their own species was evident in the highest attachment rates observed in this study.  相似文献   

11.
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The quantitative information, provided by this study about the relation between surface nanoscale morphology and bacterial adhesion points towards the rational design of implant surfaces that control or inhibit bacterial adhesion and biofilm formation.  相似文献   

12.
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

13.
AIM: To study the effect of antiseptics on bacterial biofilm formation. METHODS AND RESULTS: Biofilm formation and planktonic growth were tested in microtiter plates in the presence of antiseptics. For Escherichia coli G1473 in the presence of chlorhexidine or benzalkonium chloride, for Klebsiella pneumoniae CF504 in the presence of chlorhexidine and for Pseudomonas aeruginosa PAO1 in the presence of benzalkonium chloride, biofilm development and planktonic growth were affected at the same concentrations of antiseptics. For PAO1 in the presence of chlorhexidine and CF504 in the presence of benzalkonium chloride, planktonic growth was significantly inhibited by a fourfold lower antiseptic concentration than biofilm development. For Staphylococcus epidermidis CIP53124 in the presence of antiseptics at the minimal inhibitory concentration (MIC), a total inhibition of biofilm formation was observed. For Staph. epidermidis exposed to chlorhexidine at 1/2, 1/4 and 1/8 MIC, or to benzalkonium chloride at 1/8, 1/16 or 1/32 MIC, biofilm formation was increased from 11.4% to 22.5% without any significant effect onto planktonic growth. CONCLUSIONS: Chlorhexidine and benzalkonium chloride inhibited biofilm formation of different bacterial species but were able to induce biofilm development for the Staph. epidermidis CIP53124 strain at sub-MICs. SIGNIFICANCE AND IMPACT OF THE STUDY: Sublethal exposure to cationic antiseptics may contribute to the persistence of staphylococci through biofilm induction.  相似文献   

14.
细菌耐多药外排泵的研究进展   总被引:1,自引:0,他引:1  
近年来,由于抗生素的不合理及广泛使用,全球多重耐药菌和广泛耐药菌不断出现。关于细菌耐药机制中外排泵及生物膜形成的研究越来越受关注。研究发现,外排泵与生物膜形成有密切联系,不同细菌的不同外排泵对生物膜形成的影响各异,而生物膜形成又影响外排泵基因表达。本文就细菌耐多药外排泵的研究进展进行综述。  相似文献   

15.
细菌的生物被膜是其在自然界中一种常见的生存状态。生物被膜的形成是细菌耐药性产生的主要机制之一,也是许多感染性疾病难以控制的重要原因。由于生物被膜在传染性疾病中的突出地位和细菌多重耐药性的蔓延,目前急需研制开发出能够调节生物被膜形成的新型抗菌药物。文中对调节生物被膜形成和发育的小分子抑制剂进行了详细的综述。  相似文献   

16.
细菌生物膜的形成与调控机制   总被引:7,自引:0,他引:7  
细菌通过自身合成的水合多聚物粘附在固体表面,以固着的方式生长从而形成生物膜,细菌生物膜的形成涉及到几个明显的阶段,包括起始的附着、细胞与细胞之间的吸附与增殖、生物膜的成熟、及最后细菌的脱离等四个阶段,生物膜的形成增加了细菌对抗生素的抗性以及帮助细菌逃逸寄主的免疫攻击等,从而引起临床上持续性的慢性感染等各种问题;生物膜结构非常复杂,除了细菌分泌的各种胞外多糖,胞外蛋白质外,最新的研究表明,DNA也是生物膜的一个重要成分.针对近年来的最新文献报道分别对生物膜的形成、结构以及调控机制等进行综述.  相似文献   

17.
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-Δ dsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-Δ dsbA under UV light as well as in both the wild type and the KT2440-Δ dsbA when grown on Luria–Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.  相似文献   

18.
Biofilm growth on polymeric surfaces was monitored using ultrasonic frequency-domain reflectometry (UFDR). The materials utilized for this study included nonporous polycarbonate (PC) sheets, polyamide (PA) nanofiltration composite membranes and porous polyvinylidene fluoride (PVDF) microfiltration membranes (nominal pore size: 0.65 microm). Coupons of each material were placed in a biologically active annular reactor for up to 300 days, and subjected to a constant shear field (0.12 N m(-2)), which induced sessile microbial growth from acetate amended municipal tap water. Acoustic monitoring was non-destructively executed by traversing coupons in a constant temperature water bath using a spherically focused 20-MHz immersion transducer. This semi-automated system was configured to obtain reflections from 50 regions (c.a. 120x10(3) microm2) distributed evenly near the centerline of each coupon. The resulting reflected power distributions were compared with standard biochemical and microscopic assays that described surface associated biofilms. When compared to clean (virgin) conditions, biofilms growing on coupons induced consistent attenuations in reflection amplitude, which caused statistically significant shifts in reflected power (p<0.01). Using exocellular polysaccharides as a surrogate measure of total biofilm mass, UFDR was able to detect biofilms developing on any of the materials tested at surface-averaged masses < or = 150 microg cm(-2). Above these threshold levels, increasing amounts of exocellular polysaccharides correlated with significant decreases in total reflected power (TRP). The distribution of biomass on the coupon surfaces determined by acoustic spectra was consistent with that observed using environmental scanning electron microscopy (ESEM). These results suggest that UFDR may be used as a non-destructive tool to monitor biofouling in a wide variety of applications.  相似文献   

19.
In this paper we examine spatio-temporal pattern formation in reaction-diffusion systems on the surface of the unit sphere in 3D. We first generalise the usual linear stability analysis for a two-chemical system to this geometrical context. Noting the limitations of this approach (in terms of rigorous prediction of spatially heterogeneous steady-states) leads us to develop, as an alternative, a novel numerical method which can be applied to systems of any dimension with any reaction kinetics. This numerical method is based on the method of lines with spherical harmonics and uses fast Fourier transforms to expedite the computation of the reaction kinetics. Numerical experiments show that this method efficiently computes the evolution of spatial patterns and yields numerical results which coincide with those predicted by linear stability analysis when the latter is known. Using these tools, we then investigate the r?le that pre-pattern (Turing) theory may play in the growth and development of solid tumours. The theoretical steady-state distributions of two chemicals (one a growth activating factor, the other a growth inhibitory factor) are compared with the experimentally and clinically observed spatial heterogeneity of cancer cells in small, solid spherical tumours such as multicell spheroids and carcinomas. Moreover, we suggest a number of chemicals which are known to be produced by tumour cells (autocrine growth factors), and are also known to interact with one another, as possible growth promoting and growth inhibiting factors respectively. In order to connect more concretely the numerical method to this application, we compute spatially heterogeneous patterns on the surface of a growing spherical tumour, modelled as a moving-boundary problem. The numerical results strongly support the theoretical expectations in this case. Finally in an appendix we give a brief analysis of the numerical method. Received: 27 July 2000 / Revised version: 15 August 2000 / Published online: 16 February 2001  相似文献   

20.
Toi CS  Cleaton-Jones P 《Anaerobe》2006,12(2):99-105
Four, traditional African food mixtures (maize plus milk and sugar, maize plus gravy, samp plus beans, brown bread plus margarine and peanut butter) were evaluated for their ability to sustain the growth of mutans streptococci in batch culture. A synthetic complex medium, brain heart infusion with 3% sucrose was used as an experimental control. Six NCTC laboratory reference strains and five clinical isolates collected from the plaque of children were investigated. The doubling time of bacterial strains was prolonged in maize plus gravy (2.5-6.0 h) and samp plus beans (1.3-9.9h), and the number of cell divisions was low, compared with bread plus margarine plus peanut butter (0.7-5.1h). The least amount of acid was produced in maize plus milk plus sugar (3.92+/-8.15 mmole/mL), and the average pH during the fermentation of maize plus milk plus sugar, maize plus gravy and samp plus beans did not drop below the critical point for enamel demineralisation, pH 5.7. Bacterial growth in samp plus beans produced a small quantity of lactic acid (0.46+/-1.10 mmole/mL) compared to bread plus margarine and peanut butter (2.64+/-3.30 mmole/mL) and BHI plus 3% sucrose (12.23+/-10.72 mmole/mL). Extracellular polysaccharide (ECP) produced was lowest in maize plus milk and sugar (0.22+/-0.33 mg/mL), compared with the remaining food mixtures (0.47-1.75 mg/mL). Statistical analysis showed that the influence of the mixed-foods on doubling time (F=3.01, P=0.03), pH (F=14.41, P<0.0001) and ECP (F=135.32, P<0.0001) was greater than the significant variance found between mutans streptococci strains. Results suggest that the level of mutans streptococci activity in samp plus beans, maize plus milk and sugar and maize plus gravy contributes little towards the formation of dental caries, and that significant differences exist between mutans streptococci laboratory reference and clinical strains in response to traditional African food mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号