首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
QSAR analysis of a set of previously synthesized 2,5,6-trisubstituted benzoxazole, benzimidazole and 2-substituted oxazolo(4,5-b)pyridine derivatives tested for growth inhibitory activity against Candida albicans, was performed by using the computer-assisted multiple regression procedure. The activity contributions for either heterocyclic ring systems or substituent effects of these compounds were determined from the correlation equation and the predictions for the lead optimization were described. The resulting QSAR revealed that the oxazolo(4,5-b)pyridine ring system with the substitution of a benzyl moiety at position 2 was the most favourable structure among the heterocyclic nuclei. Moreover, the fifth position in the fused ring system is found more significant than the other positions in improving the activity.  相似文献   

2.
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6?µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35?µM.  相似文献   

3.
Some fused heterocyclic compounds as eukaryotic topoisomerase II inhibitors   总被引:2,自引:0,他引:2  
Our previously synthesized 37 compounds, which are 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole, and oxazolo(4,5-b)pyridine derivatives, were tested for their eukaryotic DNA topoisomerase II inhibitory activity in cell free system and 28 were found to inhibit the topoisomerase II at an initial concentration of 100 microg/ml. After further testing at a lower range of concentrations, 12 derivatives, which were considered as positive topoisomerase inhibitors, exhibited IC50 values between 11.4 and 46.8 microM. Etoposide was used as the standard reference drug to compare the inhibitor activity. Among these compounds, 2-phenoxymethylbenzothiazole (3f), 6-nitro-2-(2-methoxyphenyl)benzoxazole (1a), 5-methylcarboxylate-2-phenylthiomethylbenzimidazole (3c), and 6-methyl-2-(2-nitrophenyl)benzoxazole (1c) were found to be more active than the reference drug etoposide. Present results point out that, besides the very well-known bi- and ter-benzimidazoles, compounds with single bicycle fused ring systems in their structure such as benzimidazole, benzoxazole, benzothiazole, and/or oxazolopyridine derivatives also exhibit significant topoisomerase II inhibitory activity.  相似文献   

4.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

5.
Five ruthenium(II) complexes, i.e., [Ru(bpy)2(TIP)]2+ (bpy=2,2′‐bipyridine; TIP=2‐thiophenimidazo[4,5‐f] [1,10]phenanthroline; 1 ), [Ru(bpy)2(5‐NTIP)]2+ (5‐NTIP=2‐(5‐nitrothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 2 ), [Ru(bpy)2(5‐MOTIP)]2+ (5‐MOTIP=2‐(5‐methoxythiophen)imidazo[4,5‐f] [1,10]phenanthroline; 3 ), [Ru(bpy)2(5‐BTIP)]2+ (5‐BTIP=2‐(5‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 4 ), and [Ru(bpy)2(4‐BTIP)]2+ (4‐BTIP=2‐(4‐bromothiophen)imidazo[4,5‐f] [1,10]phenanthroline; 5 ), were synthesized and characterized by elemental analysis and UV/VIS, IR, and 1H‐NMR spectroscopic methods. The photophysical and DNA‐binding properties were investigated by means of UV and fluorescence spectroscopic methods and viscosity measurements, respectively. The results suggest that all five complexes can bind to CT‐DNA with various binding strength. Complexes 2 and 3 showed the strongest and the weakest binding affinity, respectively, among these five complexes. Due to the substituent position of the Br‐atom in the ligand, complex 5 interacted stronger with CT‐DNA than complex 4 . The binding affinities of the complexes decreased in the order 2, 5, 4, 1 , and 3 .  相似文献   

6.
Abstract

- The 4-amino-1-(2.3-dideoxy-β-D-glycero-pent-2-enofurano-syl)-1H-irnidazo[4,5-c]pyridine (1) and 4-amino-1-(2,3-dideoxy-β-D-gfycero-pentofuranosyl)-1H-imidazo[4,5-c]pyridine (2), 3-deaza analogues of the anti-HIV agents 2′.3′-didehydro-2′,3′-dideoxyadenosine (d4A) and 2′,3′-dideoxy-adenosine (ddA), have been synthesized. The reaction of 3-deazaadenosine (3) with 2-acetoxyisobutyryl bromide yielded a mixture of cis and trans 2′,3′-ha-lo acetates which was convertcd into olefinic nucleoside (1) on treatment with a Zn/Cu couplc and then with methanolic ammonia. The 2′,3′-dideoxy-3-deazaadenosine (2) was obtained by catalytic reduction of 1. A number of phosphate triester derivatives of 2 have also been prepared. The diethyl-, dipropyl- and dibutylpliospliates 7a-c and 3-deazaadenosine have shown anti-HIV activity at non-cytotoxic doses. Compounds 7a-c have also shown significant cytostatic activity against murine colon adenocarcinoma cells.  相似文献   

7.
The interaction between 3‐spiro‐2′‐pyrrolidine‐3′‐spiro‐3″‐piperidine‐2,3″‐dione (PPD) and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence and UV–vis spectroscopy. Fluorescence emission data revealed that BSA (1.00 × 10‐5 mol/L) fluorescence was statically quenched by PPD at various concentrations, which implies that a PPD–BSA complex was formed. The binding constant (KA), the number of binding sites (n) and the specific binding site of the PPD with BSA were determined. Energy‐transfer efficiency parameters were determined and the mechanism of the interaction discussed. The thermodynamic parameters, ΔG, ΔH and ΔS, were obtained according to van't Hoff's equation, showing the involvement of hydrophobic forces in these interactions. The effect of PPD acting on the BSA conformation was detected by synchronous fluorescence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A new dinuclear copper(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐N′‐ (2‐carbo‐xylatophenyl)oxamide (H3dmapob), and endcapped with 2,2′‐diamino‐4,4′‐bithiazole (dabt), namely [Cu2(dmapob)(dabt)(CH3OH)(pic)]·(DMF)0.75·(CH3OH)0.25 has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single‐crystal X‐ray diffraction. In the crystal structure, both copper(II) ions have square–pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two‐dimensional supramolecular framework is formed through hydrogen bonds and π–π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA‐ and BSA‐binding properties as well as anticancer activities is preliminarily discussed.  相似文献   

9.
A new tetracopper(II) complex bridged both by oxamido and carboxylato groups, namely [Cu4(dmaepox)2(bpy)2](NO3)2·2H2O, where H3dmaepox and bpy represent N‐benzoato‐N′‐ (3‐methylaminopropyl)oxamide and 2,2′‐bipyridine, was synthesized, and its structure reveals the presence of a centrosymmetric cyclic tetracopper(II) cation assembled by a pair of cis‐dmaepox3–‐ bridged dicopper(II) units through the carboxylato groups, in which the endo‐ and exo‐copper(II) ions bridged by the oxamido group have a square‐planar and a square‐pyramidal coordination geometries, respectively. The aromatic packing interactions assemble the complex molecules to a two‐dimensional supramolecular structure. The reactivity toward DNA and protein bovine serum albumin (BSA) indicates that the complex can interact with herring sperm DNA through the intercalation mode and the binding affinity is dominated by the hydrophobicity and chelate ring arrangement around copper(II) ions and quenches the intrinsic fluorescence of BSA via a static process. The cytotoxicity of the complex shows selective cancer cell antiproliferative activity.  相似文献   

10.
A new one‐dimensional (1D) copper(II) coordination polymer {[Cu2(dmaepox)(dabt)](NO3)·0.5 H2O}n, where H3dmaepox and dabt denote N‐benzoato‐N′‐(3‐methylaminopropyl)oxamide and 2,2′‐diamino‐4,4′‐bithiazole, respectively, was synthesized and characterized by single‐crystal X‐ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis‐oxamido and carboxylato groups to form a 1‐D coordination polymer with the corresponding Cu···Cu separations of 5.1946(19) and 5.038(2) Å. There is a three‐dimensional supramolecular structure constructed by hydrogen bonding and π–π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS‐DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.  相似文献   

11.
The interaction of a novel bioactive agent N‐{[N‐(2‐dimethylamino) ethyl] acridine‐4‐carboxamide}‐α‐alanine [N‐(ACR‐4‐CA)‐α‐ALA] with human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption and circular dichroism spectrophotometric techniques under simulative physiological conditions. The fluorescence quenching of HSA by addition of N‐(ACR‐4‐CA)‐α‐ALA is due to static quenching and hydrogen bonding. Moreover, hydrophobic interactions play a role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA as well. The number of binding sites, n, and the binding constant values, KA, were noted to be 0.88 and 3.4 × 104 L mol?1 for N‐(ACR‐4‐CA)‐α‐ALA at 293 K. The binding distances and the energy transfer efficiency between N‐(ACR‐4‐CA)‐α‐ALA and protein were determined. The negative value of enthalpy change and positive value of entropy change in the present study indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A new small‐molecule acceptor (2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f]indanone))7,12‐dihydro‐(4,4,10,10‐tetrakis(4‐hexylphenyl)‐5,11‐diocthylthieno[3′,2′:4,5]cyclopenta[1,2‐b]thieno[2″,3″:3′,4′]cyclopenta[1′,2′:4,5]thieno[2,3‐f][1]benzothiophene) (NNBDT) based on naphthyl‐fused indanone ending units is reported. This molecule shows a narrow optical bandgap of 1.43 eV and effective absorption in the range of 700–870 nm. The devices based on poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T):NNBDT yield a power conversion efficiency of 11.7% with a low energy loss of 0.55 eV and a high fill factor (FF) of 71.7%. Another acceptor (2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f]indanone))7,12‐dihydro‐4,4,7,7,12,12‐hexaoctyl‐4H‐cyclopenta[2″,1″:5,6;3″,4″:5′,6′]diindeno[1,2‐b:1′,2′‐b′]dithiophene (FDNCTF) is introduced as the third component to fabricate ternary devices. The two acceptors (NNBDT and FDNCTF) possess complementary absorption, same molecular orientation, and well‐miscible behavior. It is found that there exists a nonradiative energy transfer process from FDNCTF to NNBDT. The fullerene‐free ternary cells based on PBDB‐T:NNBDT:FDNCTF achieve a high efficiency of 12.8% with an improved short circuit current near 20 mA cm?2 in contrast to the binary devices. The result represents the best performance for fullerene‐free ternary solar cells reported to date and highlights the potential of ternary solar cells.  相似文献   

13.
Phosphodiesterase 4 (PDE4) is a key enzyme involved in the hydrolysis of cyclic adenosine monophosphate (cAMP) and widely expressed in several types of cancers. The inhibition of PDE4 results in an increased concentration of intracellular cAMP levels that imparts the anti‐inflammatory response in the target cells. In the present report, two series of triazolo‐pyridine dicarbonitriles and substituted dihydropyridine dicarbonitriles were synthesized using green protocol (TBAB in refluxed water). We next evaluated the title compounds for their cytotoxicity towards lung cancer (A549) cells and identified 7′‐[4‐(methylsulfonyl)phenyl]‐5′‐oxo‐1′,5′‐dihydrospiro[cyclohexane‐1,2′‐[1,2,4]triazolo[1,5‐a]pyridine]‐6′,8′‐dicarbonitrile ( 5h ) and 7′‐(1‐methyl‐1H‐imidazol‐2‐yl)‐5′‐oxo‐1′,5′‐dihydrospiro[cyclohexane‐1,2′‐[1,2,4]triazolo[1,5‐a]pyridine]‐6′,8′‐dicarbonitrile ( 5j ) as lead analogs with the IC50 values of 15.2 and 24.1 μm , respectively. Furthermore, all the new compounds were tested for PDE4 inhibitory activity and 5j showed relatively good inhibitory activity towards PDE4 with inhibition of 50.9 % at 10 μm . In silico analysis demonstrated the favorable interaction of the title compounds with the target enzyme. Taken together, the present study introduces a new scaffold for the development of novel PDE4 inhibitors to fight against inflammatory diseases.  相似文献   

14.
Trifluoromethylphenyl amides (TFMPAs) were designed and synthesized as potential pesticides. Thirty‐three structures were evaluated for fungicidal activity against three Colletotrichum species using direct bioautography assays. Active compounds were subsequently tested against C. fragariae, C. gloeosporioides, C. acutatum, Phomopsis obscurans, P. viticola, Botrytis cinerea and Fusarium oxysporum. The study identified 2‐chloro‐N‐[2,6‐dichloro‐4‐(trifluoromethyl)phenyl]acetamide ( 7a ) as showing the strongest antifungal activity, and the broadest activity spectrum in this set against Colletotrichum acutatum (at 48 and 72 h) and Phomopsis viticola (at 144 h). The presence of triethylamine in its complex with N‐[2,6‐dichloro‐4‐(trifluoromethyl)phenyl]‐2,2,3,3,3‐pentafluoropropanamide ( 7b′ ) played an important role in the bioactivity, and depending on the concentration or fungal species it showed higher or lower activity than the parent amide. X‐Ray crystallography has shown that the complex ( 7b′ ) is an ion pair, (C10H2Cl2F8NO)? (C6H16N)+, where a proton is transferred from the amide nitrogen to the triethylamine nitrogen and then connected by hydrogen bonding to the acyl oxygen (N?H 0.893 Å; H???O 1.850 Å; N???O 2.711 Å; N?H???O 161.2(13)°). Although none of these compounds were better than standards, this work revealed some potential lead structures for further development of active novel compounds.  相似文献   

15.
Several spectroscopic approaches namely fluorescence, time‐resolved fluorescence, UV‐visible, and Fourier transform infra‐red (FT‐IR) spectroscopy were employed to examine the interaction between ethane‐1,2‐diyl bis(N,N‐dimethyl‐N‐hexadecylammoniumacetoxy)dichloride (16‐E2‐16) and bovine serum albumin (BSA). Fluorescence studies revealed that 16‐E2‐16 quenched the BSA fluorescence through a static quenching mechanism, which was further confirmed by UV–visible and time‐resolved fluorescence spectroscopy. In addition, the binding constant and the number of binding sites were also calculated. The thermodynamic parameters at different temperatures (298 K, 303 K, 308 K and 313 K) indicated that 16‐E2‐16 binding to BSA is entropy driven and that the major driving forces are electrostatic interactions. Decrease of the α‐helix from 53.90 to 46.20% with an increase in random structure from 22.56 to 30.61% were also observed by FT‐IR. Furthermore, the molecular docking results revealed that 16‐E2‐16 binds predominantly by electrostatic and hydrophobic forces to some residues in the BSA sub‐domains IIA and IIIA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The syntheses of 7-amino-3-(β-D-ribofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (8-aza-1-deazaadenosine) (2) and 7-amino-3-(2-deoxy-β-D-erythro-pentofuranosyl)-3H-1,2,3-triazolo[4,5-b]pyridine (2′-deoxy-8-aza-1-deazaadenosine) (3) by glycosylation of the anion of 7-chloro-3H-1,2,3-triazolo[4,5-b]pyridine are described. The anomeric configuration as well as the position of glycosylation were determined by 1H, 13 NMR, UV and N.O.E. difference spectroscopy. The cytotoxicity of these nucleosides against several murine and human tumor cell lines is discussed. Compounds 2 and 3 proved to be good inhibitors of adenosine deaminase.  相似文献   

17.
Interaction of 3‐styrylindoles 1–8 viz. 3‐(2‐phenylethenyl‐E)‐NH‐indole (1), 3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (2), 5‐bromo‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (3), 5‐methoxy‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (4), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐NH‐indole (5), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐N‐ethylindole (6), 5‐bromo‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (7) and 5‐methoxy‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (8) with bovine serum albumin (BSA) was examined by UV–vis and steady‐state fluorescence spectroscopy. The fluorescence intensity of 1–8 increases with the increasing BSA concentration. Upon binding with BSA, while 1 and 5–8 show a blue shift in their λf max, 2–4 do not exhibit such behavior. Compounds 1–8 also quench the 345 nm fluorescence of BSA in phosphate buffer (λex, 280 nm). These compounds intercalate in the hydrophobic regions of BSA, as evidenced by the determination of BSA binding site micropolarity using compounds 2–8. As evidenced by the estimation of energy transfer efficiency and distance between the donor (BSA‐Trp‐212) and the acceptor (3‐styrylindoles), the halo‐substituted compounds 3 and 7 interact with BSA more effectively than the other 3‐strylindoles. These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2‐b:4,5‐b′]dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated benzo[1,2‐b:4,5‐b′] dithiophene (BDT)‐based donor–acceptor (D–A) polymers, poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐2′‐ethylhexyl‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (PBDTT‐SF‐TT) and poly(4,8‐bis(5′‐((2″‐ethylhexyl)thio)‐4′‐fluorothiophen‐2′‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)‐alt‐1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (PBDTT‐SF‐BDD), namely, via an advantageous and synthetically economic route for the key monomer are reported herein. Synergistic effects of fluorination and alkylthiolation on BDT moieties are discussed in detail, which is based on the superior balance between high Voc and large Jsc when PBDTT‐SF‐TT/PC71BM and PBDTT‐SF‐BDD/PC71BM solar cells present their high Voc as 1.00 and 0.97 V (associated with their deep highest occupied molecular orbital level of ?5.54 and ?5.61 eV), a moderately high Jsc of 14.79 and 14.70 mA cm?2, and thus result a high power conversion efficiency of 9.07% and 9.72%, respectively. Meanwhile, for PBDTT‐SF‐TT, a very low energy loss of 0.59 eV is pronounced, leading to the promisingly high voltage, and furthermore performance study and morphological results declare an additive‐free PSC from PBDTT‐SF‐TT, which is beneficial to practical applications.  相似文献   

19.
Three sulfonamide derivatives (SAD) were first synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfadimidine, sulfamethoxazole and sulfachloropyridazine sodium) and were characterized by elemental analysis, 1H NMR and MS. The interaction between bovine serum albumin (BSA) and SAD was studied using UV/vis absorption spectroscopy, fluorescence spectroscopy, time‐resolved fluorescence spectroscopy and circular dichroism spectra under imitated physiological conditions. The experimental results indicated that SAD effectively quenched the intrinsic fluorescence of BSA via a static quenching process. The thermodynamic parameters showed that hydrogen bonding and van der Waal's forces were the predominant intermolecular forces between BSA and two SADs [4‐((4‐(N‐(4,6‐dimethylpyrimidin‐2‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate and 4‐((4‐(N‐(5‐methylisoxazol‐3‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate], but hydrophobic forces played a major role in the binding process of BSA and 4‐((4‐(N‐(6‐chloropyridazin‐3‐yl)sulfamoyl)phenyl) carbamoyl)phenyl acetate. In addition, the effect of SAD on the conformation of BSA was investigated using synchronous fluorescence spectroscopy and circular dichroism spectra. Molecular modeling results showed that SAD was situated in subdomain IIA of BSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Novel benzoxazole derivatives were synthesized, and their antitubercular activity against sensitive and drug‐resistant Mycobacterium tuberculosis strains (M. tuberculosis H37Rv, M. tuberculosis sp. 210, M. tuberculosis sp. 192, Mycobacterium scrofulaceum, Mycobacterium intracellulare, Mycobacterium fortuitum, Mycobacterium avium, and Mycobacterium kansasii) was evaluated. The chemical step included preparation of ketones, alcohols, and esters bearing benzoxazole moiety. All racemic mixtures of alcohols and esters were separated in Novozyme SP 435‐catalyzed transesterification and hydrolysis, respectively. The transesterification reactions were carried out in various organic solvents (tert‐butyl methyl ether, toluene, diethyl ether, and diisopropyl ether), and depending on the solvent, the enantioselectivity of the reactions ranged from 4 to >100. The enzymatic hydrolysis of esters was performed in 2 phase tert‐butyl methyl ether/phosphate buffer (pH = 7.2) system and provided also enantiomerically enriched products (ee 88‐99%). The antitubercular activity assay has shown that synthesized compounds exhibit an interesting antitubercular activity. Racemic mixtures of alcohols, (±)‐4‐(1,3‐benzoxazol‐2‐ylsulfanyl)butan‐2‐ol ((±)‐ 3a ), (±)‐4‐[(5‐bromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3b ), and (±)‐4‐[(5,7‐dibromo‐1,3‐benzoxazol‐2‐yl)sulfanyl]butan‐2‐ol ((±)‐ 3c ), displayed as high activity against M. scrofulaceum, M. intracellulare, M. fortuitum, and M. kansasii as commercially available antituberculosis drug‐Isoniazid. Moreover, these compounds exhibited twice higher activity toward M. avium (MIC 12.5) compared with Isoniazid (MIC 50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号