首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of morphology》2017,278(8):1033-1057
The special sensory, motor, and cognitive capabilities of mammals mainly depend upon the neocortex, which is the six‐layered cover of the mammalian forebrain. The origin of the neocortex is still controversial and the current view is that larger brains with neocortex first evolved in late Triassic Mammaliaformes. Here, we report the earliest evidence of a structure analogous to the mammalian neocortex in a forerunner of mammals, the fossorial anomodont Kawingasaurus fossilis from the late Permian of Tanzania. The endocranial cavity of Kawingasaurus is almost completely ossified, which allowed a less hypothetical virtual reconstruction of the brain endocast to be generated. A parietal foramen is absent. A small pit between the cerebral hemispheres is interpreted as a pineal body. The inflated cerebral hemispheres are demarcated from each other by a median sulcus and by a possible rhinal fissure from the rest of the endocast. The encephalization quotient estimated by using the method of Eisenberg is 0.52, which is 2–3 times larger than in other nonmammalian synapsids. Another remarkable feature are the extremely ramified infraorbital canals in the snout. The shape of the brain endocast, the extremely ramified maxillary canals as well as the small frontally placed eyes suggest that special sensory adaptations to the subterranean habitat such as a well developed sense of touch and binocular vision may have driven the parallel evolution of an equivalent of the mammalian neocortex and a mammal‐like lemnothalamic visual system in Kawingasaurus . The gross anatomy of the brain endocast of Kawingasaurus supports the Outgroup Hypothesis, according to which the neocortex evolved from the dorsal pallium of an amphibian‐like ancestor, which receives sensory projections from the lemnothalamic pathway. The enlarged brain as well as the absence of a parietal foramen may be an indication for a higher metabolic rate of Kawingasaurus compared to other nonmammalian synapsids.  相似文献   

2.
Recent studies have analyzed and described the endocranial cavities of caviomorph rodents. However, no study has documented the changes in the morphology and relative size of such cavities during ontogeny. Expecting to contribute to the discussion of the endocranial spaces of extinct caviomorphs, we aimed to characterize the cranial endocast morphology and paranasal sinuses of the largest living rodent, Hydrochoerus hydrochaeris, by focusing on its ontogenetic growth patterns. We analyzed 12 specimens of different ontogenetic stages and provided a comparison with other cavioids. Our study demonstrates that the adult cranial endocast of H. hydrochaeris is characterized by olfactory bulbs with an irregular shape, showing an elongated olfactory tract without a clear circular fissure, a marked temporal region that makes the endocast with rhombus outline, and gyrencephaly. Some of these traits change as the brain grows. The cranial pneumatization is present in the frontal and lacrimal bones. We identified two recesses (frontal and lacrimal) and one sinus (frontal). These pneumatic cavities increase their volume as the cranium grows, covering the cranial region of the cranial endocast. The encephalization quotient was calculated for each specimen, demonstrating that it decreases as the individual grows, being much higher in younger specimens than in adults. Our results show that the ontogenetic stage can be a confounding factor when it comes to the general patterns of encephalization of extinct rodents, reinforcing the need for paleobiologists to take the age of the specimens into account in future studies on this subject to avoid age-related biases.  相似文献   

3.
The brain endocasts of the late Triassic (Carnian) traversodontids (Eucynodontia: Gomphodontia) Siriusgnathus niemeyerorum and Exaeretodon riograndensis from southern Brazil are described based on virtual models generated using computed tomography scan data. Their skull anatomy resembles that of other non-mammaliaform cynodonts, showing an endocranial cavity that is not fully ossified. A “V-shaped” orbitosphenoid, neither fully developed nor ossified is present in E. riograndensis. The nasal cavity is confluent with the encephalic cavity. Thus, the anterior limit of the olfactory bulbs is not definite. The brain endocast is elongated, being narrow anteriorly and wide posteriorly, with the maximum width at the parafloccular cast. The olfactory bulbs do not present a clear division between their counterparts, due to the absence of a longitudinal sulcus. A longitudinal sulcus in the forebrain delimiting the cerebral hemispheres, the pineal tube, and the parietal foramen are absent in both taxa. The large and well-developed unossified zone is partially separated from the remaining endocast by a notch formed by the supraoccipital. The encephalization quotients, as well as the endocranial volume/body mass relationships of S. niemeyerorum and E. riograndensis are within the range expected for non-mammaliaform Therapsida.  相似文献   

4.
5.
Endocranial surfaces, volumes, and interconnectivities of extant and fossil odontocetes potentially offer information on the general architecture of the brain and on the structure of the specialized cetacean circulatory system. Although conventional methods for acquiring such data have generally involved invasive preparation of the specimen, particularly in the case of fossils, new tomographic technologies afford nondestructive access to these internal morphologies. In this study we used high-resolution X-ray computed tomography (HRXCT) to scan a skull of the extant Tursiops truncatus (Cetacea: Odontoceti). We processed the data to reveal the cranial endocast and details of internal skeletal architecture (data at www.digimorph.org). Major features that can be discerned include aspects of the specimen's hypertrophied retia mirabilia, the major canals and openings of the cranial cavity, and the relationship of the brain and endocranial circulatory structures to the surrounding skeleton. CT data also provide information on the shape of the brain that may be lost in conventional anatomical preparations, and readily provide volumetric and linear measurements of the endocast and its individual segments. These results demonstrate the utility of HRXCT for interpreting the internal cranial anatomy of both extant and fossil cetaceans.  相似文献   

6.
Even after 200 years of study, some details of the cranial anatomy of ichthyosaurs, one of the most successful groups of marine vertebrates in the Mesozoic, are still unclear. New information on the braincase, palate and occiput are provided from three‐dimensional scans of an exceptionally preserved ichthyosaur (‘Hauffiopteryxtypicus) skull from the Toarcian (183–174 Ma, Lower Jurassic) of Strawberry Bank, England. This ichthyosaur has unusual, hollow, tubular hyoid bars. The occipital and braincase region is fully reconstructed, creating the first digital cranial endocast of an ichthyosaur. Enlarged optic lobes and an enlarged cerebellum suggest neuroanatomical adaptations that allowed it to be a highly mobile, visual predator. The olfactory region also appears to be enlarged, suggesting that olfaction was more important for ichthyosaurs than has been assumed. Phylogenetic analysis suggests this ichthyosaur is closely related to, but distinct from, Hauffiopteryx, and positioned within Thunnosauria, a more derived position than previously recovered. These results further our knowledge of ichthyosaur cranial anatomy in three dimensions and provide a platform in which to study the anatomical adaptations that allowed ichthyosaurs to dominate the marine realm during the Mesozoic.  相似文献   

7.
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.  相似文献   

8.
9.
The endocast of Aegyptopithecus, a 27 million year old ape, reveals that its brain was advanced over that of prosimians and comparable to that of modern anthropoids in relative size and in having expanded visual cortex, reduced olfactory bulbs, and a central sulcus separating primary somatic sensory and motor cortex. The early appearance of those features suggests that they may have been among the adaptations responsible for the evolution of anthropoids from prosimian ancestors. The frontal lobe was relatively smaller in Aegyptopithecus than in modern anthropoids. An endocast of Dolichocebus, one of the oldest known New World monkeys (25–30 million years old), reveals visual cortex expanded as in modern anthropoids. The 19 million year old Napak frontal bone displays a hominoid rather than cercopithecoid sulcal pattern. An 18 million year old endocast of the ape Dryopithecus (Proconsul) was neither monkey-like nor primitive, as originally described, but rather apelike and essentially modern in all observable features. The oldest undoubted Old World monkey endocast, from nine million year old Mesopithecus, reveals that the brain was modern in sulcal pattern and proportions. The sulcal pattern was like that of modern colobines, but that appears to be the more primitive condition, from which features characteristic of modern cercopithecine brains have evolved. The brain of six million year old Libypithecus was similar to that of Mesopithecus. A two million year old endocast of “Dolichopithecus” arvernensis displays a modern cercopithecine sulcal pattern.  相似文献   

10.
董氏中华盗龙(Sinraptor dongi) 是产自中国西北部新疆侏罗纪石树沟组上部的一种大型兽脚类。其正型标本包括了保存完好的脑颅,这是在最近的化石修理中额外发现的。脑颅中骨化筛骨的横切面为 U 形。在脑颅的解剖方位,蝶筛骨和眶蝶骨之间有一未骨化空间,表明该恐龙存活时具有软骨质的中隔蝶骨。利用乳胶颅腔模型和 CT 扫描技术对颅腔和含气隐窝的形态进行了研究,发现了一些此前未描述过的特点。其中尤为引人注目的是,发育良好的尾鼓室隐窝[一般认为是虚骨龙类(coelurosaurs) 的典型特征]以及基蝶骨隐窝和相关气腔的内部形态。侧鼓室隐窝和基蝶骨隐窝有纵向通道连接,很可能同时具有气腔和血管功能。模型也表明,颅腔没有髓质隆起,小脑绒球隐窝的开孔为沙漏状。若不包含嗅束和嗅球,颅腔容积为 95 ml,脑容商在其他基干坚尾龙类( tetanurans) 的范围内。虽然这些类群的第Ⅱ-Ⅳ对脑神经相对位置各有差异,但前脑、中脑和后脑之间的角度与鲨齿龙类( carcharodontosaurids) [鲨齿龙(Carcharodontosaurus) 及南方巨兽龙(Giganotosaurus) ]相似。第Ⅸ,Ⅹ和Ⅺ对脑神经穿过一个半月形的孔。在异特龙超科( Allosauroidea) 中,中华盗龙(Sinraptor) 在颅腔形态上与鲨齿龙、南方巨兽龙和异特龙( Allosaurus) 的相似程度比它与高棘龙(Acrocanthosaurus) 的相似程度更高。  相似文献   

11.
Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoceratodus forsteri and compare this to previous accounts. Unexpected characters in this specimen include short olfactory peduncles connecting the olfactory bulbs to the telencephalon, and an oblong telencephalon. Furthermore, we illustrate the endocast (the mould of the internal space of the neurocranial cavity) of Neoceratodus, also describing and quantifying the brain-endocast relationship in a lungfish for the first time. Overall, the brain of the Australian lungfish closely matches the size and shape of the endocast cavity housing it, filling more than four fifths of the total volume. The forebrain and labyrinth regions of the brain correspond very well to the endocast morphology, while the midbrain and hindbrain do not fit so closely. Our results cast light on the gross neural and endocast anatomy in lungfishes, and are likely to have particular significance for palaeoneurologists studying fossil taxa.  相似文献   

12.
Anagalids are an extinct group of primitive mammals from the Asian Palaeogene thought to be possible basal members of Glires. Anagalid material is rare, with only a handful of crania known. Here we describe the first virtual endocast of an anagalid, based on the holotype of Anagale gobiensis (AMNH 26079; late Eocene, China), which allows for comparison with published endocasts from fossil members of modern euarchontogliran lineages (i.e. primates, rodents, lagomorphs). The endocast displays traits often observed in fossorial mammals, such as relatively small petrosal lobules and a low neocortical ratio, which would be consistent with previous inferences about use of subterranean food sources based on heavy dental wear. In fact, Anagale gobiensis has the lowest neocortical ratio yet recorded for a euarchontogliran. This species was olfaction-driven, based on the relatively large olfactory bulbs and laterally expansive palaeocortex. The endocast supports previous inferences that relatively large olfactory bulbs, partial midbrain exposure and low encephalization quotient are ancestral for Euarchontoglires, although the likely fossorial adaptations of Anagale gobiensis may also partly explain these traits. While Anagale gobiensis is a primitive mammal in many aspects, some of its derived endocranial traits point towards a new, different trajectory of brain evolution within Euarchontoglires.  相似文献   

13.
A new early-to-middle Eocene cetacean from the Kala Chitta Hills of northern Pakistan is described: Attockicetus praecursor new genus and species. It is based on fragmentary cranial material, including a rostral fragment, P3–M3, endocast, and ectotympanic. Attockicetus is the first remingtonocetid from northern Pakistan, and the oldest member of its family. Attockicetus praecursor is smaller than the species of the other remingtonocetid genera, Remingtonocetus, Andrewsiphius, and Dalanistes. It is also more primitive in the retention of large protocones on the upper molars and the anterior position of the orbit. Known material for Attockicetus is fragmentary, but the taxon is important because it extends the geographic and temporal range of remingtonocetids, is one of the few remingtonocetids in which toothcrowns are preserved, and because it is probably the most plesiomorphic remingtonocetid.  相似文献   

14.
15.
Lungfish, or dipnoans, have a history spanning over 400 million years and are the closest living sister taxon to the tetrapods. Most Devonian lungfish had heavily ossified endoskeletons, whereas most Mesozoic and Cenozoic lungfish had largely cartilaginous endoskeletons and are usually known only from isolated tooth plates or disarticulated bone fragments. There is thus a substantial temporal and evolutionary gap in our understanding of lungfish endoskeletal morphology, between the diverse and highly variable Devonian forms on the one hand and the three extant genera on the other. Here we present a virtual cranial endocast of Rhinodipterus kimberleyensis, from the Late Devonian Gogo Formation of Australia, one of the most derived fossil dipnoans with a well-ossified braincase. This endocast, generated from a Computed Microtomography (µCT) scan of the skull, is the first virtual endocast of any lungfish published, and only the third fossil dipnoan endocast to be illustrated in its entirety. Key features include long olfactory canals, a telencephalic cavity with a moderate degree of ventral expansion, large suparaotic cavities, and moderately enlarged utricular recesses. It has numerous similarities to the endocasts of Chirodipterus wildungensis and Griphognathus whitei, and to a lesser degree to ''Chirodipterus'' australis and Dipnorhynchus sussmilchi. Among extant lungfish, it consistently resembles Neoceratodus more closely than Lepidosiren and Protopterus. Several trends in the evolution of the brains and labyrinth regions in dipnoans, such as the expansions of the utricular recess and telencephalic regions over time, are identified and discussed.  相似文献   

16.
Despite continuous improvements, our knowledge of the neurocranial anatomy of sauropod dinosaurs as a whole is still poor, which is especially true for titanosaurians even though their postcranial remains are common in many Upper Cretaceous sites worldwide. Here we describe a braincase from the uppermost Cretaceous locality of ‘‘Lo Hueco” in Spain that is one of the most complete titanosaurian braincases found so far in Europe. Although the titanosaurian Ampelosaurus sp. is known from the same locality, this specimen is clearly a distinct taxon and presents a number of occipital characters found in Antarctosaurus and Jainosaurus, which are approximately coeval taxa from southern Gondwana. The specimen was subjected to X-ray computed tomographic (CT) scanning, allowing the generation of 3D renderings of the endocranial cavity enclosing the brain, cranial nerves, and blood vessels, as well as the labyrinth of the inner ear. These findings add considerable knowledge to the field of sauropod paleoneuroanatomy in general and titanosaurian endocast diversity in particular. Compared with that of many sauropodomorphs, the endocast appears only slightly flexed in lateral view and bears similarities (e.g., reduction of the rostral dural expansion) with Gondwanan titanosaurians such as Jainosaurus, Bonatitan, and Antarctosaurus. The vestibular system of the inner ear is somewhat contracted (i.e., the radius of the semicircular canals is small), but less so than expected in derived titanosaurians. However, as far as the new specimen and Jainosaurus can be contrasted, and with the necessary caution due to the small sample of comparative data currently available, the two taxa appear more similar to one another in endocast morphology than to other titanosaurians. Recent phylogenetic analyses of titanosaurians have not included virtually any of the taxa under consideration here, and thus the phylogenetic position of the new Spanish titanosaurian—even its generic, let alone specific, identification—is not possible at the moment. Nevertheless, both the braincase osteology and the endocast morphology suggest that the specimen represents a derived titanosaurian that presumably branched further from the base of Lithostrotia, potentially even near Saltasauridae, comparable in evolutionary terms with Jainosaurus.  相似文献   

17.
We describe a virtual endocast produced from ultra high resolution X-ray computed tomography (CT) data for the microsyopid, Microsyops annectens (middle Eocene, Wyoming). It is the most complete and least distorted endocast known for a plesiadapiform primate and because of the relatively basal position of Microsyopidae, has particular importance to reconstructing primitive characteristics for Primates. Cranial capacity is estimated at 5.9 cm3, yielding encephalization quotients (EQ) of 0.26–0.39 (Jerison’s equation) and 0.32–0.52 (Eisenberg’s equation), depending on the body mass estimate. Even the lowest EQ estimate for M. annectens is higher than that for Plesiadapis cookei, while the range of estimates overlaps with that of Ignacius graybullianus and with the lower end of the range of estimates for fossil euprimates. As in other plesiadapiforms, the olfactory bulbs of M. annectens are large. The cerebrum does not extend onto the cerebellum or form a ventrally protruding temporal lobe with a clear temporal pole, suggesting less development of the visual sense and a greater emphasis on olfaction than in euprimates. Contrasts between the virtual endocast of M. annectens, and both a natural endocast of the same species and a partial endocast from the earlier-occurring Microsyops sp., cf. Microsyops elegans, suggest that the coverage of the caudal colliculi by the cerebrum evolved within the Microsyops lineage. This implies that microsyopids expanded their cerebra and perhaps evolved an improved visual sense independent of euprimates. With a growing body of data on the morphology of the brain in primitive primates, it is becoming clear that many of the characteristics of the brain common to euprimates evolved after the divergence of stem primates from other euarchontans and likely in parallel in different lineages. These new data suggest a different model for the ancestors of euprimates than has been assumed based on the anatomy of the brain in visually specialized diurnal tree shrews.  相似文献   

18.
19.
20.
Abstract

A digital cranial endocast of the specimen UFRGS-PV-596-T of Riograndia guaibensis was obtained from μCT scan images. This is a small cynodont, closely related to mammaliaforms, from the Late Triassic of Brazil. Riograndia has large olfactory bulb casts and the cerebral hemispheres region is relatively wider than in other non-mammaliaform cynodonts. Impressions of vessels were observed and a conspicuous mark on the dorsal surface was interpreted as the transverse sinus. The calculated encephalization quotient is greater than the range seen in most other non-mammaliaform cynodonts. The ratios between linear and area measurements of the dorsal surface suggest four evolutionary changes from a basal eucynodont morphology to mammaliaforms, involving an evolutionary increase of the relative size of the olfactory bulbs and the width of the cerebral hemispheres and cerebellum. The data supports the hypothesis of the neurological evolution of the mammalian lineage starting with a trend for an increase of the olfactory bulbs, which is associated with adaptations in the nasal cavity. This trend is suggested to be linked to the selective pressures for small-sized faunivorous, and probably nocturnal, animals, and represents an initial improvement of the sensory receptor system, subsequently leading to further development of the ‘superior’ structures for sensorial processing and integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号