首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LRP (low-density lipoprotein receptor-related protein) can bind a wide range of structurally diverse ligands to regions composed of clusters of ~40 residue Ca2+-dependent, disulfide-rich, CRs (complement-like repeats). Whereas lysine residues from the ligands have been implicated in binding, there has been no quantification of the energetic contributions of such interactions and hence of their relative importance in overall affinity, or of the ability of arginine or histidine residues to bind. We have used four representative CR domains from the principal ligand-binding cluster of LRP to determine the energetics of interaction with well-defined small ligands that include methyl esters of lysine, arginine, histidine and aspartate, as well as N-terminally blocked lysine methyl ester. We found that not only lysine but also arginine and histidine bound well, and when present with an additional proximal positive charge, accounted for about half of the total binding energy of a protein ligand such as PAI-1 (plasminogen activator inhibitor-1). Two such sets of interactions, one to each of two CR domains could thus account for almost all of the necessary binding energy of a real ligand such as PAI-1. For the CR domains, a central aspartate residue in the sequence DxDxD tightens the Kd by ~20-fold, whereas DxDDD is no more effective. Together these findings establish the rules for determining the binding specificity of protein ligands to LRP and to other LDLR (low-density lipoprotein receptor) family members.  相似文献   

2.
The growing demand of pharmaceutical‐grade plasmid DNA (pDNA) suitable for biotherapeutic applications fostered the development of new purification strategies. The surface plasmon resonance technique was employed for a fast binding screening of l ‐histidine and its derivatives, 1‐benzyl‐l ‐histidine and 1‐methyl‐l ‐histidine, as potential ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70, and 14 kbp). The binding analysis was performed with different isoforms of each plasmid (supercoiled, open circular, and linear) separately. The results revealed that the overall affinity of plasmids to l ‐histidine and its derivatives was high (KD > 10−8 M), and the highest affinity was found for human papillomavirus 16 E6/E7 (KD = 1.1 × 10−10 M and KD = 3.34 × 10−10 M for open circular and linear plasmid isoforms, respectively). l ‐Histidine and 1‐benzyl‐l ‐histidine were immobilized on monolithic matrices. Chromatographic studies of l ‐histidine and 1‐benzyl‐l ‐histidine monoliths were also performed with the aforementioned samples. In general, the supercoiled isoform had strong interactions with both supports. The separation of plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in the eluent, in both supports, but a lower salt concentration was required in the 1‐benzyl‐l ‐histidine monolith because of stronger interactions promoted with pDNA. The efficiency of plasmid isoforms separation remained unchanged with flow rate variations. The binding capacity for pDNA achieved with the l ‐histidine monolith was 29‐fold higher than that obtained with conventional l ‐histidine agarose. Overall, the combination of either l ‐histidine or its derivatives with monolithic supports can be a promising strategy to purify the supercoiled isoform from different plasmids with suitable purity degree for pharmaceutical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The bacterial periplasmic methionine‐binding protein MetQ is involved in the import of methionine by the cognate MetNI methionine ATP binding cassette (ABC) transporter. The MetNIQ system is one of the few members of the ABC importer family that has been structurally characterized in multiple conformational states. Critical missing elements in the structural analysis of MetNIQ are the structure of the substrate‐free form of MetQ, and detailing how MetQ binds multiple methionine derivatives, including both l ‐ and d ‐methionine isomers. In this study, we report the structures of the Neisseria meningitides MetQ in substrate‐free form and in complexes with l ‐methionine and with d ‐methionine, along with the associated binding constants determined by isothermal titration calorimetry. Structures of the substrate‐free (N238A) and substrate‐bound N. meningitides MetQ are related by a “Venus‐fly trap” hinge‐type movement of the two domains accompanying methionine binding and dissociation. l ‐ and d ‐methionine bind to the same site on MetQ, and this study emphasizes the important role of asparagine 238 in ligand binding and affinity. A thermodynamic analysis demonstrates that ligand‐free MetQ associates with the ATP‐bound form of MetNI ~40 times more tightly than does liganded MetQ, consistent with the necessity of dissociating methionine from MetQ for transport to occur.  相似文献   

4.
In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787–1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.  相似文献   

5.
The periplasmic binding protein LAO from Salmonella typhimurium, which is involved in lysine, arginine and ornithine transport, has been crystallized together with one of its ligands, arginine (LAO-Arg). Preliminary X-ray diffraction studies of LAO-Arg crystal show that it belongs to the orthorhombic space group P2(1)2(1)2(1) and has the unit cell dimensions of a = 37.65 A, b = 59.45 A, c = 115.91 A. Crystals of the LAO-Arg complex diffract beyond 2.0 A resolution.  相似文献   

6.
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (?60 °C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples.  相似文献   

7.
Thermodynamic studies on ligand–protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer‐based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4–7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl‐ligand with hexyl spacer. The selectivity in the series of dansyl‐ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH0/ΔG0. The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We present a fully defined culture system (adapted Essential8TM [E8TM] medium in combination with vitronectin) for human embryonic stem cells that can be used for SILAC purposes. Although a complete incorporation of the labels was observed after 4 days in culture, over 90% of precursors showed at least 10% conversion. To reduce this arginine conversion, E8TM medium was modified by adding (1) l ‐proline, (2) l ‐ornithine, (3) Nω‐hydroxy‐nor‐l ‐arginine acetate, or by (4) lowering the arginine concentration. Reduction of arginine conversion was best obtained by adding 5 mM l ‐ornithine, followed by 3.5 mM l ‐proline and by lowering the arginine concentration in the medium to 99.5 μM. No major changes in pluripotency and cell amount could be observed for the adapted E8TM media with ornithine and proline. However, our subsequent ion mobility assisted data‐independent acquisition (high‐definition MS) proteome analysis cautions for ongoing changes in the proteome when aiming at longer term suppression of arginine conversion.  相似文献   

9.
The chemical modification of histidine and arginine residues results in a loss of binding of the Mr 46,000 mannose 6-phosphate receptor (MPR 46) to a phosphomannan affinity matrix (Stein, M., Meyer, J. E., Hasilik, A., and von Figura, K. (1987) Biol. Chem. Hoppe-Seyler 368, 927-936). Reversal of the modification or presence of mannose 6-phosphate during the modification partially restores or protects the binding activity, indicating that histidine and arginine residues contribute to the mannose 6-phosphate binding site. The 5 histidine and 8 arginine residues within the luminal domain of MPR 46, which contains the ligand binding site, were exchanged by site-directed mutagenesis. Only the conservative replacement of His-131 and Arg-137 by serine and lysine, respectively, results in a loss of binding activity without affecting other properties of the receptor such as the presence of intramolecular disulfide bonds, immunoreactivity, processing of N-linked oligosaccharides, formation of dimers, intracellular distribution, and surface expression. Conservative replacement of other histidine and arginine residues did not affect the binding activity. Nonconservative replacement of several arginine residues reduced binding activity and immunoreactivity, indicating that the loss of a positive charge at these positions alters the folding of MPR 46. We conclude from these results that His-131 and Arg-137 are essential for binding of ligands by MPR 46.  相似文献   

10.
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding proteins, 2AEP binds near the center of mass of EcPhnD in a cleft formed between two lobes. Comparison of the open, unliganded structure with the closed 2AEP-bound structure shows that the two lobes pivot around a hinge by ∼ 70° between the two states. Extensive hydrogen bonding and electrostatic interactions stabilize 2AEP, which binds to EcPhnD with low nanomolar affinity. These structures provide insight into Pn uptake by bacteria and facilitated the rational design of high signal-to-noise Pn biosensors based on both coupled small-molecule dyes and autocatalytic fluorescent proteins.  相似文献   

11.
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 ? resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ~100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.  相似文献   

12.
The influence of l ‐homoarginine on the heat‐induced aggregation of three model proteins, i.e. porcine, mink, and human growth hormones was investigated by circular dichroism spectroscopy. It was found that the effect of l ‐homoarginine as an analogue of arginine depends on the concentration of the additive as well as the protein itself. l ‐Homoarginine increased the onset temperature of heat‐induced aggregation of both porcine and mink growth hormones. However, the formation of human growth hormone aggregates was increased at low concentrations of l ‐homoarginine. Only at higher concentrations of the additive was the onset temperature of human growth hormone aggregation found to increase. Additional experiments of human growth hormone melting in the presence of histidine, lysine, and sodium chloride were performed. The effect of lysine was similar as in the presence of l ‐homoarginine. It follows that in protein formulations low concentrations of amino acids should be used with some precaution. At low concentration of additive, depending on the charge of both protein and amino acid used, the promotion of aggregation of unfolding intermediates may occur. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:808–814, 2015  相似文献   

13.
Neuroglobin, cytoglobin, and hemoglobins from Drosophila melanogaster and Arabidopsis thaliana were studied for their ligand binding properties versus temperature. These globins have a common feature of being hexacoordinated (via the distal histidine) under deoxy conditions, displaying and enhanced amplitude for the alpha absorption band at 560 nm. External ligands can bind, but the transition from the hexacoordinated form to the ligand (L) bound species is slow, as expected for a replacement reaction Fe-His <--> Fe <--> Fe-L. Histidine binding is on the order of 1 ms; dissociation times are variable, and may be as long as 1 s for the highest histidine affinities. Oxygen binds rapidly but dissociates slowly, requiring as much as 1 s. These rates would correspond to a very high affinity for the pentacoordinated form; however, competition with the distal histidine leads decreases the affinity for the external ligand. The observed oxygen affinity remains in the range of 1 to 10 mm Hg. The low oxygen dissociation indicates a stabilization via H-bonds as for certain globins from parasites (Ascaris, the trematodes). Other ligands such as CO, or CN for the ferric form, show a decreased affinity, since only the competition with the E7 histidine, but not the stabilizing H-bond, plays a role. In addition, the competitive internal ligand leads to a weaker observed temperature dependence of the ligand affinity, since the difference in equilibrium energy for the two ligands is much lower than that of ligand binding to pentacoordinated hemoglobin. This effect could be of biological relevance for certain organisms, since it would lead to an oxygen affinity that is nearly independent of temperature.  相似文献   

14.
The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP‐cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L‐histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L‐His and many related naturally occurring compounds. Our data confirm that L‐His is the preferred ligand, but that 1‐methyl‐L‐His and 3‐methyl‐L‐His can also bind, while the dipeptide carnosine binds weakly and D‐histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L‐Arg, homo‐L‐Arg, and post‐translationally modified methylated Arg‐analogs also bind with reasonable avidity, with the exception of symmetric dimethylated‐L‐Arg. In contrast, L‐Lys and L‐Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein‐based reagentless biosensor.  相似文献   

15.
Calmodulin (CAM) is a modulatory protein that regulates cellular activity by binding to a large number of proteins. Key elements in the Ca2+-dependent mechanism of interaction between CAM and the proteins it activates are the selectivity for Ca2+ ions and the requirement for Ca2+-dependent conformational changes. We report on results from a series of molecular dynamics simulations that identified discrete steps in the mechanism of structural rearrangement of CAM. The findings implicate the side chains of arginine residues in the bending of the central alpha helix. Structural and energetic considerations point to a dynamic hydrogen bonding pattern around the arginine residues as a ratcheting-type mechanism, causing the kinking of the central helix in consecutive steps stabilized by each new pattern of hydrogen bonds. Initial model building studies to locate potential binding sites of ligands such as trifluoperazine (TFP) indicate that the compaction of CAM results in several structural changes, that explain the selective binding of molecules such as TFP in the N-terminal domain. The present studies identify specific residues involved in the process of compaction and point to specific CAM residues involved in the binding of the ligand. These insights lead directly to propositions for experimental engineering of the molecular structure of CAM in order to probe the hypotheses and their consequences for the function of this important protein.  相似文献   

16.
ArtJ is the substrate-binding component (receptor) of the ATP-binding cassette (ABC) transport system ArtJ-(MP)2 from the thermophilic bacterium Geobacillus stearothermophilus that is specific for arginine, lysine, and histidine. The highest affinity is found for arginine (Kd = 0.039(±0.014) μM), while the affinities for lysine and histidine are about tenfold lower. We have determined the X-ray structures of ArtJ liganded with each of these substrates at resolutions of 1.79 Å (arginine), 1.79 Å (lysine), and 2.35 Å (histidine), respectively. As found for other solute receptors, the polypeptide chain is folded into two distinct domains (lobes) connected by a hinge. The interface between the lobes forms the substrate-binding pocket whose geometry is well preserved in all three ArtJ/amino acid complexes. Structure-derived mutational analyses indicated the crucial role of a region in the carboxy-terminal lobe of ArtJ in contacting the transport pore Art(MP)2 and revealed the functional importance of Gln132 and Trp68. While variant Gln132Leu exhibited lower binding affinity for arginine but no binding of lysine and histidine, the variant Trp68Leu had lost binding activity for all three substrates. The results are discussed in comparison with known structures of homologous proteins from mesophilic bacteria.  相似文献   

17.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

18.
Insulin causes endothelium‐derived nitric oxide (NO)‐dependent vascular relaxation, and increases L ‐arginine transport via cationic amino acid transporter 1 (hCAT‐1) and endothelial NO synthase (eNOS) expression and activity in human umbilical vein endothelium (HUVEC). We studied insulin effect on SLC7A1 gene (hCAT‐1) expression and hCAT‐transport activity role in insulin‐modulated human fetal vascular reactivity. HUVEC were used for L ‐arginine transport and L ‐[3H]citrulline formation (NOS activity) assays in absence or presence of N‐ethylmaleimide (NEM) or L ‐lysine (L ‐arginine transport inhibitors). hCAT‐1 protein abundance was estimated by Western blot, mRNA quantification by real time PCR, and SLC7A1 promoter activity by Luciferase activity (?1,606 and ?650 bp promoter fragments from ATG). Specific protein 1 (Sp1), and total or phosphorylated eNOS protein was determined by Western blot. Sp1 activity (at four sites between ?177 and ?105 bp from ATG) was assayed by chromatin immunoprecipitation (ChIP) and vascular reactivity in umbilical vein rings. Insulin increased hCATs–L ‐arginine transport, maximal transport capacity (Vmax/Km), and hCAT‐1 expression. NEM and L ‐lysine blocked L ‐arginine transport. In addition, it was trans‐stimulated (~7.8‐fold) by L ‐lysine in absence of insulin, but unaltered (~1.4‐fold) in presence of insulin. Sp1 nuclear protein abundance and binding to DNA, and SLC7A1 promoter activity was increased by insulin. Insulin increased NO synthesis and caused endothelium‐dependent vessel relaxation and reduced U46619‐induced contraction, effects blocked by NEM and L ‐lysine, and dependent on extracellular L ‐arginine. We suggest that insulin induces human umbilical vein relaxation by increasing HUVEC L ‐arginine transport via hCATs (likely hCAT‐1) most likely requiring Sp1‐activated SLC7A1 expression. J. Cell. Physiol. 226: 2916–2924, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
The ability to construct molecular motifs with predictable properties in aqueous solution requires an extensive knowledge of the relationships between structure and energetics. The design of metal binding motifs is currently an area of intense interest in the bioorganic community. To date synthetic motifs designed to bind metal ions lack the remarkable affinities observed in biological systems. To better understand the structural basis of metal ion affinity, we report here the thermodynamics of binding of divalent zinc ions to wild-type and mutant carbonic anhydrases and the interpretation of these parameters in terms of structure. Mutations were made both to the direct His ligand at position 94 and to indirect, or second-shell, ligands Gln-92, Glu-117, and Thr-199. The thermodynamics of ligand binding by several mutant proteins is complicated by the development of a second zinc binding site on mutation; such effects must be considered carefully in the interpretation of thermodynamic data. In all instances modification of the protein produces a complex series of changes in both the enthalpy and entropy of ligand binding. In most cases these effects are most readily rationalized in terms of ligand and protein desolvation, rather than in terms of changes in the direct interactions of ligand and protein. Alteration of second-shell ligands, thought to function primarily by orienting the direct ligands, produces profoundly different effects on the enthalpy of binding, depending on the nature of the residue. These results suggest a range of activities for these ligands, contributing both enthalpic and entropic effects to the overall thermodynamics of binding. Together, our results demonstrate the importance of understanding relationships between structure and hydration in the construction of novel ligands and biological polymers.  相似文献   

20.
Isothermal titration calorimetry has been used to study the binding of 20 different peptides to the peptide binding protein OppA, and the crystal structures of the ligand complexes have been refined. This periplasmic binding protein, part of the oligopeptide permease system of Gram negative bacteria, has evolved to bind and enclose small peptides of widely varying sequences. The peptides used in this study have the sequence Lys-X-Lys, where X is any of the 20 commonly occurring amino acids. The various side-chains found at position 2 on the ligand fit into a hydrated pocket. The majority of side-chains are restrained to particular conformations within the pocket. Water molecules act as flexible adapters, matching the hydrogen-bonding requirements of the protein and ligand and shielding charges on the buried ligand. This use of water by OppA to broaden the repertoire of its binding site is not unique, but contrasts sharply with other proteins which use water to help bind ligands highly selectively. Predicting the thermodynamics of binding from the structure of the complexes is highly complicated by the influence of water on the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号