首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

4.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

9.
10.
11.
This study utilizes sensitive, modern isothermal titration calorimetric methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α‐1‐acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug–AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine, all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug‐binding thermodynamics was characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed that an enthalpy–entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (?Hº) and favorable (positive) entropic (?Sº) contributions to the Gibbs free energy (?Gº). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side‐chain sub‐domains within the multi‐lobed AGP ligand binding cavity.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Surveying microglia, the resident macrophage‐like cells in the central nervous system, continuously screen their surroundings to sense imbalance in tissue homeostasis. Their activity is tightly regulated in both a pro‐ and anti‐inflammatory manner. We have previously shown that the lipoglycoproteins WNT‐3A and WNT‐5A drive pro‐inflammatory transformation in primary mouse microglia cells, arguing that WNTs have a role in the modulation of the central nervous system immune response. In this study, we address the effects of recombinant WNT‐3A and WNT‐5A on lipopolysaccharide (LPS)‐activated mouse primary microglia to investigate the putative anti‐inflammatory modulation of microglia by WNTs. While both WNT‐3A and WNT‐5A alone induce an up‐regulation of cyclooxygenase 2 (COX2), a generic pro‐inflammatory microglia marker, LPS exceeds these effects dramatically. However, combination of LPS and WNTs results in a dose‐dependent decrease in LPS‐induced cyclooxygenase 2 protein and mRNA expression. In conclusion, our data suggest that WNTs have a dual and context‐dependent effect on microglia acting in a homeostatic pro‐ and anti‐inflammatory manner.  相似文献   

14.
Hepatocellular carcinoma (HCC) is most common malignant cancer worldwide; however, the mortality rate of HCC remains high due to the invasion and metastasis of HCC. Thus, exploring novel treatments to prevent the invasion of HCC is needed for improving clinical outcome of this fatal disease. In this study, we identified lectin from Bandeiraea simplicifolia seeds (BS‐I) binds to metastasis‐associated HCC cell surface glycans by a lectin microarray and inhibits HCC cell migration and invasion through downregulating the matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and urokinase‐type plasminogen activator (uPA) production. These effects of BS‐I were mediated by inhibiting the activation of AKT/GSK‐3β/β‐catenin pathway and depended on specificity of lectin BS‐I binding to GalNAc. GSK3β inhibitors rescued BS‐I‐mediated inhibition of migration and invasion of HCC cell. Further, we identified that lectin BS‐I interacts with sGrp78, affects membrane localization of sGrp78 and attenuates the binding of sGrp78 and p85 to inhibit the activation of AKT/GSK‐3β/β‐catenin pathway. Overexpression of Grp78 or P85 rescues BS‐I‐mediated inhibition of migration and invasion of HCC cell. These findings demonstrated for the first time that BS‐I can act as a novel potential drug to prevent the invasion of HCC.  相似文献   

15.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
17.
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE?/? mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.  相似文献   

18.
To investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatilla decoction (PD), the levels of nitric oxide (NO), endothelin‐1 (ET‐1), tumor necrosis factor‐α (TNF‐α), and interleukin‐1α (IL‐1α) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with PD and its seven active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with lipopolysaccharide (LPS) at 1 µg ml?1 for 3 h and then treated with PD at 1, 5, and 10 mg ml?1 and its seven ingredients at 1, 5, and 10 µg ml?1 for 21 h, respectively. The results revealed that PD, anemonin, berberine, and esculetin inhibited the production of NO; PD, anemonin, and esculetin inhibited the secretion of ET‐1; PD, anemoside B4, berberine, jatrorrhizine, and aesculin downregulated TNF‐α expression; PD, anemoside B4, berberine, and palmatine decreased the content of IL‐1α. It showed that PD and its active ingredients could significantly inhibit the secretion of NO, ET‐1, TNF‐α, and IL‐1α in LPS‐induced RIMECs and suggested they would reduce inflammatory response via these cytokines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号