共查询到20条相似文献,搜索用时 0 毫秒
1.
Márquez-Gamiño S Sotelo F Sosa M Caudillo C Holguín G Ramos M Mesa F Bernal J Córdova T 《Bioelectromagnetics》2008,29(5):406-409
The effect of 1 Hz, 30 mT pulsed magnetic fields on young adult rat femoral metaphyseal bone thickness was assessed. Ten same litter, female Wistar rats were studied; five of them underwent 30 min magnetic stimulation sessions for 20 consecutive days. The anterior and posterior cortical, as well as trabecular bone transverse thicknesses were measured. The results obtained under clear field microscopy in stimulated and control histological cuts were (in microm) 398 +/- 32 versus 260 +/- 22 (P = 0.002), 380 +/- 68 versus 252 +/- 21 (P = 0.03), and 168 +/- 11 versus 112 +/- 11 (P = 0.002), respectively. The transcranial magnetic stimulation system, approved for human therapy, generates pulsed electromagnetic fields, which induce a significant thickness increase in cortical and trabecular in vivo stimulated bone tissues. This is the first time this effect in healthy animals is shown. 相似文献
2.
3.
Work on the interspecific and intraspecific variation of trabecular bone in the proximal femur of primates demonstrates important architectural variation between animals with different locomotor behaviors. This variation is thought to be related to the processes of bone adaptation whereby bone structure is optimized to the mechanical environment. Micromechanical finite element models were created for the proximal femur of the leaping Galago senegalensis and the climbing and quadrupedal Loris tardigradus by converting bone voxels from high-resolution X-ray computed tomography scans of the femoral head to eight-noded brick elements. The resulting models had approximately 1.8 million elements each. Loading conditions representing takeoff phase of a leap and more generalized load orientations were applied to the models, and the models were solved using the iterative \"row-by-row\" matrix-vector multiplication algorithm. The principal strain and Von Mises stress results for the leaping model were similar for both species at each load orientation. Similar hip joint reaction forces in the range of 4.9 x to 12 x body weight were calculated for both species under each loading condition, but the hip reaction values estimated for Loris were higher than predicted based on locomotor behavior. These results suggest that functional adaptation to hip joint loading may not fully explain the differences in femoral head trabecular bone structure in Galago and Loris. The finite element method represents a unique and useful tool for analyzing the functional adaptation of trabecular bone in a diversity of animals and for reconstructing locomotor behavior in extinct taxa. 相似文献
4.
Emma E. Bird Tracy L. Kivell Matthew M. Skinner 《American journal of physical anthropology》2022,177(2):266-285
5.
Clifford J. Rosen 《Journal of cellular biochemistry》1994,56(3):348-356
As the population ages, the prevalence of osteoporosis will continue to rise. Yet, the mechanisms leading to age-related bone loss remain poorly defined. Furthermore, extensive logitudinal studies of bone mass, especially in the three decades beyond menopause, have not been completed. Although calciotropic hormones, growth hormone (GH), and insulin-like growth factor-I (IGF-I) change with age, it is not certain if these changes are responsible for age-related bone loss. Nor is it clear if the “sensecent” osteoblast is fully responsive to growth factor stimulation. To complicate matters further, both circulatory and skeletal IFG regulatory systems are extremely redundant. Changes in serum IFGs may lead to compensatory alterations in IGF regulatory systems are extremely redundant. Changes in serum IGFs may lead to compensatory alterations in IGF receptor number, IGF binding protein (IGFBP) synthesis, or IGFBP catabolism. What is measured in serum, maya, in the end, be either a mirror or a rirage of skeletal IGF action! Clinical trials with “replacement” doses of GH or IGF-I are underway. But, critical efidence does not yet support the concept that a true “sommatopause” alters bone remodeling. Moreover, only scarce data exist that GH augments bone formation or prevents bone loss in the elderly. As clinicians expand the use of recombinant growth factors to elders, ethical and clinical issues surrounding administration of the new “fountain of youth” will be revisited. For basic scientists studying skeletal growth factors and their relationship to senescence, significant questions remain unanswered. New technological advances will provide clues about the basic mechanisms of skeletal aging. But, until these findings are validated, scientists and clinicians will have difficulty judging the role of growth factors in halting, or reversing, the inexorable consequences of aging. 相似文献
6.
7.
Although the correspondence between habitual activity and diaphyseal cortical bone morphology has been demonstrated for the fore- and hind-limb long bones of primates, the relationship between trabecular bone architecture and locomotor behavior is less certain. If sub-articular trabecular and diaphyseal cortical bone morphology reflects locomotor patterns, this correspondence would be a valuable tool with which to interpret morphological variation in the skeletal and fossil record. To assess this relationship, high-resolution computed tomography images from both the humeral and femoral head and midshaft of 112 individuals from eight anthropoid genera (Alouatta, Homo, Macaca, Pan, Papio, Pongo, Trachypithecus, and Symphalangus) were analyzed. Within-bone (sub-articular trabeculae vs. mid-diaphysis), between-bone (forelimb vs. hind limb), and among-taxa relative distributions (femoral:humeral) were compared. Three conclusions are evident: (1) Correlations exists between humeral head sub-articular trabecular bone architecture and mid-humerus diaphyseal bone properties; this was not the case in the femur. (2) In contrast to comparisons of inter-limb diaphyseal bone robusticity, among all species femoral head trabecular bone architecture is significantly more substantial (i.e., higher values for mechanically relevant trabecular bone architectural features) than humeral head trabecular bone architecture. (3) Interspecific comparisons of femoral morphology relative to humeral morphology reveal an osteological \"locomotor signal\" indicative of differential use of the forelimb and hind limb within mid-diaphysis cortical bone geometry, but not within sub-articular trabecular bone architecture. 相似文献
8.
Karen R. Swan Louise T. Humphrey Rachel Ives 《American journal of physical anthropology》2023,180(2):272-285
9.
10.
11.
Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue 总被引:7,自引:0,他引:7
Bone tissue is a complex multilevel composite which has the ability to sense ad respond to its mechanical environment. It is believed that bone cells called osteocytes within the bone matrix sense the mechanical environment and determine whether structural alterations are needed. At present it is not known, however, how loads are transferred from the whole bone level to cells. A computational procedure combining representative volume element (RVE) based homogenization theory with digital imaging is proposed to estimate strains at various levels of bone structure. Bone tissue structural organization and RVE based analysis are briefly reviewed. The digital image based computational procedure was applied to estimate strains in individual trabeculae (first-level microstructure). Homogenization analysis of an idealized model was used to estimate strains at one level of bone structure around osteocyte lacunae (second-level trabecular microstructure). The results showed that strain at one level of bone structure is amplified to a broad range at the next microstructural level. In one case, a zeor-level tensile principal strain of 495 muE engendered strains ranging between -1000 and 7000 muE in individual trabeculae (first-level microstructure). Subsequently, a first-level tensile principal strains of 1325 muE within an inidividual trabecula engendered strains ranging between 782 and 2530 muE around osteocyte lacunae. Lacunar orientation was found to influence strains around osteocyte lacunae much more than lacunar ellipticity. In conclusion, the computational procedure combining homogenization theory with digital imaging can proveide estimates of cell level strains within whole bones. Such results may be used to bridge experimental studies of bone adaptation at the whole bone and cell culture level. (c) 1994 John Wiley & Sons, Inc. 相似文献
12.
13.
Recent studies have demonstrated the potential application of computed tomography (CT) in research into bone density. Clinical studies of bone density using CT commonly employ a dipotassium phosphate phantom to calibrate measurements of mineral density. Designed for in vivo studies, the use of this phantom requires that bones be scanned while immersed in and permeated by fluids or soft tissues similar to water in X-ray attenuation coefficient. However, this condition may not always be met in anthropological applications, which often involve rare and fragile specimens. This study compares mineral density values calculated for a sample of bones scanned—at the same sites—in air and in water. The results indicate that, when scanned in air, the mineral density of trabecular bone is dramatically underestimated, while that of cortical bone is slightly overestimated. We present a linear regression equation to correct this error but recommend that, when possible, researchers calculate their own regressions based on their specific scanning conditions. Am J Phys Anthropol 103:557–560, 1997. © 1997 Wiley-Liss, Inc. 相似文献
14.
Ján Dupej Alizé Lacoste Jeanson Josef Pelikán Jaroslav Brůžek 《American journal of physical anthropology》2017,164(4):868-876
The understanding of locomotor patterns, activity schemes, and biological variations has been enhanced by the study of the geometrical properties and cortical bone thickness of the long bones measured using CT scan cross‐sections. With the development of scanning procedures, the internal architecture of the long bones can be explored along the entire diaphysis. Recently, several methods that map cortical thickness along the whole femoral diaphysis have been developed. Precise homology is vital for statistical examination of the data; however, the repeatability of these methods is unknown and some do not account for the curvature of the bones. We have designed a semiautomatic workflow that improves the morphometric analysis of cortical thickness, including robust data acquisition with minimal user interaction and considering the bone curvature. The proposed algorithm also performs automatic landmark refinement and rigid registration on the extracted morphometric maps of the cortical thickness. Because our algorithm automatically reslices the diaphysis into 100 cross‐sections along the medial axis and uses an adaptive thresholding method, it is usable on CT scans that contain soft tissues as well as on bones that have not been oriented specifically prior to scanning. Our approach exhibits considerable robustness to error in user‐supplied landmarks, suppresses distortion caused by the curvature of the bones, and calculates the curvature of the medial axis. 相似文献
15.
Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The effects of the difference between two moduli on the final material distribution are numerically investigated. Numerical results obtained show that the mass distribution in bi-modular bone materials is different from that in traditional isotropic material. As the tension modulus is less than the compression modulus for bone tissues, the amount of mass required to support tension loads is greater than that required by isotropic material for the same daily activities including one-leg stance, abduction and adduction. 相似文献
16.
Havill LM 《American journal of physical anthropology》2003,121(4):354-360
At the microstructural level, bones remodel throughout life. This process is recorded in bone cortex as osteons. A more comprehensive understanding of the interaction between genetic regulation and environmental factors in osteon remodeling will increase the value of this skeletal record and enable more accurate reconstruction of individual life histories. The purpose of this study was to examine the contribution of maternal lineage to normal age and sex variation in osteon remodeling dynamics in Macaca mulatta. Femoral cross sections from 57 Cayo Santiago-derived rhesus macaques representing five matrilines were examined to evaluate the effect of genetic relatedness on osteon remodeling dynamics. Analysis of variance revealed an effect of maternal lineage on osteon area and Haversian canal area. The other variables did not differ significantly among matrilines. Analysis of covariance revealed no significant interactions among age, sex, and matriline for any of the microstructural variables. 相似文献
17.
Pina M Alba DM Almécija S Fortuny J Moyà-Solà S 《American journal of physical anthropology》2012,149(1):142-148
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc. 相似文献
18.
The decline in bone mass and bone strength and musculoskeletal problems associated with aging constitute a major challenge for affected individuals and the healthcare system globally. Sirtuins 1‐7 (SIRT1‐SIRT7) are a family of nicotinamide adenine dinucleotide‐dependent deacetylases with remarkable abilities to promote longevity and counteract age‐related diseases. Sirtuin knockout and transgenic models have provided novel insights into the function and signaling of these proteins in bone homeostasis. Studies have revealed that sirtuins play a critical role in normal skeletal development and homeostasis through their direct action on bone cells and that their dysregulation might contribute to different bone diseases. Preclinical studies have demonstrated that mice treated with sirtuin agonists show protection against age‐related, postmenopausal, and immobilization‐induced osteoporosis. These findings suggest that sirtuins could be potential targets for the modulation of the imbalance in bone remodeling and treatment of osteoporosis and other bone disorders. The aim of this review was to provide a comprehensive updated review of the current knowledge on sirtuin biology, focusing specifically on their roles in bone homeostasis and osteoporosis, and potential pharmacological interventions targeting sirtuins for the treatment of osteoporosis. 相似文献
19.
Stephen Abbott Erik Trinkaus David B. Burr 《American journal of physical anthropology》1996,99(4):585-601
Histomorphometric analysis of femoral and tibial diaphyseal fragments from seven Late Archaic and three Early Modern humans are compared with those of the Pecos, a pre-Columbian Native American population. The ten samples, from Broken Hill (EM-793), Shanidar 2, 3, 4, 5, and 6, Tabun 1, and Skhul 3, 6, and 7, provide age-at-death results consistent with earlier estimates for most individuals. The Pleistocene groups exhibit less bone turnover and smaller osteons than Recent populations. Resorption and formation were both coupled and balanced in these Pleistocene populations, but the overall vigor of individual cells from both the osteoclast and osteoblast cell lines was less than in Recent populations. Thus the greater bone mass in Later Pleistocene members of the genus Homo is not the result of higher levels of bone turnover, at least among adults. © 1996 Wiley-Liss, Inc. 相似文献
20.
Candace M. Kammerer Mary L. Sparks Jeffrey Rogers 《Journal of medical primatology》1995,24(4):236-242
Abstract: Bone mass and bone density were estimated in 219 pedigreed baboons (Papio hamadryas) by radiographic morphometry of the left second metacarpal. Compact bone width (total bone width – medullary canal diameter) and bone ratio (compact bone width/total bone width) decreased with increasing age squared in both sexes. The heritability of medullary canal diameter was 0.64±0.11, of compact bone width was 0.40±0.15 and of bone ratio was 0.67±0.13. The results indicate baboons are a useful model for studies of age, sex and genetic effects on bone mass. 相似文献