首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Addition of Ca ionophore, A23187, to the solution bathing the mucosal surface of descending rabbit colon resulted in a reversal of active C1absorption to active C1 secretion, a twofold increase in short-circuit current and a 40% increase in tissue conductance without affecting the rate of active Na absorption. These alterations in electrolyte transport are quantitatively similar to those previously observed in response to cyclic 3',5'-AMP (cAMP) (RA. Frizzell, M.J. Koch & S.G. Schulz, J. Membrane Biol. 27:297, 1976). When medium Ca concentration was reduced to 10(-6) M, the secretory response to A23187 was abolished but the response to cAMP was unaffected. The ionophore did not influence the cAMP levels of colonic mucosa. Addition of cyclic AMP to colonic strips preloaded with 45Ca elicited a reversible increase in Ca efflux from the tissue. These results suggest that an increase in intracellular Ca concentration stimulates colonic electrolyte secretion and that the secretory response to cAMP may be due, at least in part, to a release of Ca from intracellular stores.  相似文献   

2.
Summary Addition of the Ca ionophore, A23187 (0.5 g/ml) to the serosal side of stripped rabbit ileal mucosa, produced changes in ion transport qualitatively identical with those produced by cyclic 3,5-AMP (cAMP) and theophylline: an increase in short-circuit current and resistance, net secretion of Cl due both to a decrease in the unidirectional mucosa (m) to serosa (s) flux and an increase in the (s) to (m) flux, and net secretion of Na due to a decrease in (m) to (s) flux. Measurements of intracellular cAMP level demonstrated no change following incubation with the ionophore. Removal of Ca from the serosal bathing medium diminished the effects of A23187 but did not impair the action of theophylline. Furthermore, removal of Ca from both the mucosal and serosal bathing media by replacing it with Sr completely abolished the p.d. response to A23187. These results suggest that the ionophore elicits its secretory actions by increasing Ca influx into the epithelial cells. In a similar way, carbamylcholine and serotonin, secretagogues known to have no effect on intracellular cAMP level in intestinal mucosa, were shown to be dependent on extracellular Ca to produce their full electrical response (although, in the case of carbamylcholine at least, Sr can substitute for Ca). In contrast, the secretagogues vasoactive intestinal peptide and prostaglandin E1, which raise cAMP concentration in intestinal mucosa, do not appear to require external Ca. It is interesting to speculate that Ca is an intracellular mediator of intestinal ion and water secretion and that some intestinal secretagogues may act as Ca ionophores.  相似文献   

3.
Summary We measured the short-circuit current (I sc) across canine tracheal epithelium and the intracellular cAMP levels of the surface epithelial cells in the same tissues to assess the role of cAMP as a mediator of electrogenic Cl secretion. Secretogogues fall into three classes: (i) epinephrine, prostaglandin (PG) E1, and theophylline increase bothI sc and cellular cAMP levels; (ii) PGF2 and calcium ionophore A23187, increaseI sc without affecting cell cAMP levels at the doses employed; and (iii) acetylcholine, histamine, and phenylephrine do not alter eitherI sc or cAMP levels.These findings indicate that: (i) increases in cAMP or Ca activity stimulate electrogenic Cl secretion by the columnar cells of the surface epithelium; (ii) cAMP mediates the effects of PGE1 and -adrenergic agonists; (iii) a strict correlation between cAMP levels and Cl secretion rate is not apparent from spontaneous variations in these parameters or from dose-response relations ofI sc and cAMP to epinephrine concentration; and (iv) acetylcholine, histamine, and phenylephrine, agents that stimulate electrically-neutral NaCl secretion by submucosal glands, do not evoke cAMP-mediated, responses by the surface epithelium.Addition of 10–6 m indomethacin (or other prostaglandin synthesis inhibitors) to the mucosal solution decreasesI sc and cellular cAMP levels and reduces the release of PGE2 into the bathing media by 80%. Indomethacin does not interfere with the subsequent secretory response to PGE1. This suggests that endogenous prostaglandin production underlies the spontaneous secretion of Cl across canine tracheal epithelium under basal conditions.  相似文献   

4.
Summary Addition of 0.1–0.3 m A23187, a divalent cation ionophore, to human erythrocytes suspended in a 1.0mm 45Ca2+-containing buffer results in a small ( two fold) increase in [Ca2+] i , a significant decrease in osmotic fragility, and a decrease in intracellular K+ (100 mmoles/liter of cells to 70 mmoles/liter cells) without significant alteration of intracellular [Na+]. This decrease in [K+] i is associated with a significant decrease in packed cell volume and correlates directly with the observed alteration is osmotic fragility. Increasing extracellular K+ to 125mm prevents the A23187-induced changes in osmotic fragility, K+ content and cell volume, but does not prevent the ionophore-induced uptake of45Ca2+. Addition of 0.1–0.3 m A23187 to toad erythrocytes leads to an increase in45Ca2+ uptake comparable to that observed in human erythrocytes, but does not alter osmotic fragility, cell volume or K+ content. Higher concentrations of ionophore (3.0–10.0 m) cause a 30- to 50-fold increase in45Ca2+ uptake and concomitant change in K+ content, cell volume and osmotic fragility. These changes in cell properties can be prevented by increasing extracellular [K+] to 90mm. The difference in sensitivity of the two cell types to A23187 is attributed to the presence of additional intracellular calcium pools within toad erythrocytes that prevent an increase in cytoplasmic Ca2+ until Ca2+ uptake is increased substantially at the higher concentrations of A23187.  相似文献   

5.
Summary Intact human red blood cells incubated with ionophore A23187 and calcium develop a depletion of ATP that is dependent upon the concentrations of both A23187 and Ca. Incubations of fresh cells with 0.5 m A23187 and concentrations of Ca at or below 70 m produce a depletion of ATP without a net cellular uptake of Ca. In contrast, ATP-depleted cells display an ionophore-dependent cellular uptake of Ca, under identical conditions. A hypothesis is proposed that relates these ionophore-produced ATP depletions to active Ca extrusion by the Ca ATPase.  相似文献   

6.
Summary Intracellular uptake of A23187 and the increased release of amylase and lactate dehydrogenase (LDH) accompanying ionophore uptake was studied using dissociated acinar cells prepared from mouse pancreas. Easily detected changes in the fluorescence excitation spectrum of A23187 upon transfer of the ionophore from a Tris-buffered Ringer's to cell membranes were used to monitor A23187 uptake. Uptake was rapid in the absence of extracellular Ca2+ and Mg2+ (t1/2=1 min) and much slower in the presence of Ca2+ or Mg2+ (t1/2=20 min). Cell-associated ionophore was largely intracellular as indicated by fluorescence microscopy, lack of spectral sensitivity to changes in extracellular Ca2+ and Mg2+, and by equivalent interaction of ionophore with membranes of whole and sonicated cells.A23187 (10 m) increased amylase release 200% in the presence of extracellular Ca2+ and Mg2+. In the absence of Ca2+ (but in the presence of Mg2+) A23187 did not increase amylase release. A23187 (10 m) also produced Ca2+-dependent cell damage, as judged by increased LDH release, increased permeability to trypan blue, and by disruption of cell morphology. The cell damaging and amylase releasing properties of A23187 were distinguished by their time course and dose-response relationship. A23187 (1 m) increased amylase release 140% without increasing LDH release or permeability to trypan blue.  相似文献   

7.
S Heisler 《Life sciences》1976,19(2):233-242
The ionophore, A-23187, was an effective pancreatic secretagogue. The response to A-23187 was Ca2+-dependent; Mg2+ reduced the secretory response to the ionophore. A-23187-stimulated enzyme release was potentiated by dibutyryl cyclic AMP; in the presence of carbachol, output of pancreatic protein paralleled the response to A-23187 alone. The time-course for secretion with A-23187 was similar to that observed with carbachol. The ionophore did not affect basal cyclic AMP levels but did stimulate a rapid Ca2+-dependent production of pancreatic cyclic GMP which preceded the onset of the secretory response. A-23187 did not significantly alter basal or carbachol-stimulated 45Ca efflux from isotope preloaded glands; yet in Ca2+-lowered media, it inhibited (reversed) the secretory response to carbachol, an effect which may have been due to an outward transport by the ionophore of cholinergic-mobilized intracellular Ca2+. Like carbachol, A-23187, inhibits the incorporation of amino acid into new protein, the effect being partially dependent on extracellular Ca2+. The data suggest that the pancreatic cholinergic receptor acts as a Ca2+-ionophore and that extracellular Ca2+ is utilized in the synthesis of cyclic GMP.  相似文献   

8.
Summary Olfactory receptor neurons enzymatically dissociated from channel catfish olfactory epithelium were depolarized transiently following dialysis of IP3 or cAMP (added to the patch pipette) into the cytoplasm. Voltage and current responses to IP3 were blocked by ruthenium red, a blocker of an IP3-gated Ca2+-release channel in sarcoplasmic reticulum. In contrast, the responses to cAMP were not blocked by extracellularly applied ruthenium red, nor by l-cis-diltiazem or amiloride and two of its derivatives. The current elicited by cytoplasmic IP3 in neurons under voltage clamp displayed a voltage dependence different from that of the cAMP response which showed marked outward rectification. A sustained depolarization was caused by increased cytoplasmic IP3 or cAMP when the buffering capacity for Ca2+ of the pipette solution was increased, when extracellular Ca2+ was removed or after addition of 20–200 nm charibdotoxin to the bathing solution, indicating that the repolarization was caused by an increase in [Ca i ] that opened Ca2+-activated K+ channels. The results suggest that different conductances modulated by either IP3 or cAMP are involved in mediating olfactory transduction in catfish olfactory receptor neurons and that Ca2+-activated K+ channels contribute to the termination of the IP3 and cAMP responses.Abbreviations ATP adenosine 5-triphosphate - BAPTA (bis-(o-aminophenoxy)-ethane-N-N-N-N)-tetraacetic acid - cAMP adenosine cyclic 3,5-monophosphate - cGMP guanosine cyclic 3,5-monophosphate - CTX charybdotoxin - DCB 3,4-dichlorobenzamil - EDTA ethylenediaminetetraacetic acid - EGTA ethylenglycol-bis-(b-aminoethyl)-N-N-N-N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - IP3 inositol-1,4,5-triphosphate - NMDG N-methyl-d-glucamine We would like to thank the Tanabe Seiyaku Co., Ltd., for their gift of l-cis-diltiazem. This work was supported by National Institutes of Health grants DC00566 and BRSG S07RR05825.  相似文献   

9.
Levels of basal chitin synthetase in cell-free extracts from Phycomyces blakesleeanus were reduced by breakage of cells in the presence of EDTA or EGTA. Addition of Ca2+ to these extracts activated chitin synthetase. Maximal activation was obtained after 2 h at a Ca2+ concentration of 2–5 mM. Activation by calcium was not reduced by any protease inhibitor tested but benzamidine, whereas the weak proteolytic activity of the extracts was inhibited by antipain. Larger levels of chitin synthetase activation were obtained by the simultaneous addition of calcium and calmodulin in most, but not all extracts. This further activation by calmodulin was prevented by TFP. ATP or cAMP did not stimulate activation by calcium or calcium-calmodulin.Abbreviations EGTA ethylene glycol-bis(B-aminoethylether)-N,NN-tetraacetic acid - GlcNAc N-acetyl-d-glucosamine - PMSF phenylmethylsulfonyl fluoride - SBTI soybean trypsin inhibitor - TFP trifluoperazine - TLCK N-p-tosyl-l-lysine choromethyl ketone - UDPGlcNAc uridine diphosphate N-acetyl-d-glucosamine  相似文献   

10.
Summary The intestinal secretagogues ricinoleate and deoxycholate have been tested for a capacity to form complexes with Ca2+ ions and to affect the passive equilibration of Ca2+ ions across the jejunal brush border membrane. Both of these agents formed butanol-soluble Ca2+ complexes in a model phase distribution system. They also promote the passive uptake and efflux of Ca2+ across brush border vesicles in a concentrationdependent manner. The levels of ricinoleate and deoxycholate that increase the rate of transvesicular Ca2+ movement are in the 100 to 300 m range. Concentrations as high as 1.0mm had no significant detergent effects in vesicles as measured by release of entrapped sorbitol. The kinetics of Ca2+ uptake and efflux are similar in brush border vesicles treated with A23187, ricinoleate, or deoxycholate. The influx rates observed in this study were high enough to cause the collapse of a Ca2+ gradient, which had been generated by Ca-Mg ATPase enzyme activity in the brush border membrane. Ricinoleate did not affect Ca-Mg ATPase activity at concentrations used in this study, but deoxycholate was inhibitory, indicating two potential modes for elevation of intracellular Ca2+ content by deoxycholate. When compared with the effects of the Ca2+ ionophore, A23187, it appears that both ricinoleate and deoxycholate could have significant intestinal secretory activity due to this Ca2+ ionophore property. It is also noteworthy that, at least in this model system, potential secretory effects are expressed at concentrations significantly below levels that have been associated with detergent effects or altered epithelial morphology.  相似文献   

11.
Summary To study Cl conductive and cotransport mechanisms, primary cultures of canine tracheal cells were grown to confluency on thin glass cover slips and on porous filters. Transepithelial resistance was >100 ·cm2, and short circuit current (I sc=2–20 A/cm2), representing active secretion of Cl, increased >threefold with addition of 10 m isoproterenol to the serosal solution. Cells made transiently permeable in hypotonic solution were loaded with the Cl-sensitive fluorophore 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) (5mm, 4 min, 150 mOsm). The electrical properties of the cell monolayers were not altered by the loading procedure. Intracellular SPQ fluorescence was monitored continuously by epifluorescence microscopy (excitation 360±5 nm, emission>410 nm). SPQ leakage from the cells was <10% in 60 min at 37°C. Intracellular calibration of SPQ fluorescencevs. [Cl] (0–90mm) was carried out using high-K buffers containing the ionophores nigericin (5 m) and tributyltin (10 m); SPQ fluorescence was quenched with a Stern-Volmer constant of 13m –1. Intracellular Cl activity was 43±4mm. Cl flux was measured in response to addition and removal of 114mm Cl from the bathing solution. Addition of 10 m isoproterenol increased Cl efflux from 0.10 to 0.27mm/sec. The increase was inhibited by the Cl-channel blocker diphenylamine-2-carboxylic acid (1mm). In the absence of isoproterenol, removal of external Na or addition of 0.5mm furosemide, reduced Cl influx by >fourfold. In ouabain-treated monolayers, removal of external K in the presence of 5mm barium diminished Cl influx by >twofold, suggesting that Cl entry is in part K dependent. These results establish an accurate optical method for the realtime measurement of intracellular Cl activity in tracheal cells that does not require an electrically tight cell monolayer. The data demonstrate the presence of an isoproterenol-regulated Cl channel and a furosemide-sensitive cation-coupled transport mechanism.  相似文献   

12.
Summary Treatment of Allium cepa L. cellsuspension cultures with a biotic elicitor derived from the fungus Botrytis cinerea, resulted in phytoalexin synthesis. Two phytoalexins, 5-octylcyclopenta-1,3-dione and 5-hexyl-cyclopenta-1,3-dione, were accumulated in cultured onion cells. Removal of extracellular Ca2+ by the calcium chelator ethylene glycol bis(b-aminoethyl ether) N,N-tetraacetic acid abolished the elicitor-mediated phytoalexin synthesis. The calcium channel blockers, verapamil and 8-N,N-(dimethylamino)octyl-3,4,5-trimethoxybenzoate caused similar effects, whereas the addition of the Ca2+ ionophore A23187 enhanced the accumulation of phytoalexins in the absence of the elicitor. Increase in the cytoplasmic Ca2+ concentration in elicitor-treated onion cells was observed as monitored by the fluorescent calcium indicator indo-1. These observations suggest that Ca2+ acts as a second messenger in the regulation of phytoalexin synthesis in cultured onion cells.Abbreviations A23187 4-bromo-calcium ionophore - cAMP adenosine 3,5-cyclic monophosphate - [Ca2+]cyt cytoplasmic Ca2+ concentration - EGTA ethylene glycol bis(b-aminoethyl ether) N,N-tetraacetic acid - EtOH ethanol - Et2O diethyl ether - fr.wt fresh weight - HR hypersensitive response - PIPES piperazine N,N-bis-(2-ethanesulfonic acid) - TMB-8 [8-N,N-(dimethylamino)] octyl-3,4,5-trimethoxy-benzoate - Tsl tsibulin  相似文献   

13.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

14.
15.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

16.
The calcium-dependent modulation of the affinity of the cyclic nucleotide-gated (CNG) channels for adenosine 3′,5′-cyclic monophosphate (cAMP) was studied in enzymatically dissociated rat olfactory receptor neurons, by recording macroscopic cAMP-activated currents from inside-out patches excised from their dendritic knobs. Upon intracellular addition of 0.2 mm Ca2+ (0.2 Ca) the concentration of cAMP required for the activation of half-maximal current (EC50) was reversibly increased from 3 μm to about 30 μm. This Ca2+-induced affinity shift was insensitive to the calmodulin antagonist, mastoparan, was abolished irreversibly by a 2-min exposure to 3 mm Mg2++ 2 mm EGTA (Mg + EGTA), and was not restored by the application of calmodulin (CAM). Addition of CAM plus 0.2 mm Ca2+ (0.2 Ca + CAM), further reversibly shifted the cAMP affinity from 30 μm to about 200 μm. This affinity shift was not affected by Mg + EGTA exposure, but was reversed by mastoparan. Thus, the former Ca2+-only effect must be mediated by an unknown endogenous factor, distinct from CAM. Removal of this factor also increased the affinity of the channel for CAM. The affinity shift induced by Ca2+-only was maintained in the presence of the nonhydrolyzable cAMP analogue, 8-bromo-cAMP and the phosphatase inhibitor, microcystin-LR, ruling out modulation by phosphodiesterases or phosphatases. Our results indicate that the olfactory CNG channels are modulated by an as yet unidentified factor distinct from CAM. Received: 26 December 1995/Revised: 14 March 1996  相似文献   

17.
The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secretory granule numbers appear to be qualitatively reduced after carbachol, multiple carbachol, or Ba2+ stimulation, overall granule distribution remains similar to that in untreated cells. Monensin-stimulated catecholamine release requires extracellular Na+ but not Ca2+ whereas carbachol-stimulated catecholamine release requires extracellular Ca2+ and is partially dependent on extracellular Na+. Despite its high selectivity for monovalent ions, monensin is considerably more effective in promoting catecholamine secretion than the divalent ionophores, A23187 and ionomycin, which mediate a more direct entry of extracellular Ca2+ into the cell. We propose that the monensin-stimulated increase in intracellular Na+ levels causes an increase in the availability of intracellular Ca2+ which, in turn, stimulates exocytosis. This hypothesis is supported by the comparable stimulation of catecholamine release by ouabain which inhibits the outwardly directed Na+ pump and thus permits intracellular Na+ to accumulate. The relative magnitudes of the secretion elicited by monensin, carbachol, and the calcium ionophores, are most consistent with the hypothesis that, under normal physiological conditions, Na+ acts by decreasing the propensity of Ca2+- sequestering sites to bind the Ca2+ that enters the cell as a result of acetylcholine stimulation.  相似文献   

18.
The presence of calcium is essential for chloroplast movement induced by blue light in Lemna trisulca L. The regulatory role of calcium was confirmed by the inhibition of chloroplast movement by cytochalasin B and trifluoperazine. The calcium concentration in tissues was modified by ethylene glycol-bis(2-aminoethylether)-N,N,N, N-tetraacetic acid (EGTA), the calcium ionophore A23187 and La3+. Only a long period of incubation (12h) in EGTA or La3+ caused distrubances in chloroplast movement. This indicates that calcium influx is not essential for chloroplast movement. Those conditions that dramatically changed the internal calcium concentration, either applications of calcium ionophore A23187 and EGTA, or ionophore and La3+, markedly decreased the amplitude of response to blue-light pulses. This demonstrates that disturbances of chloroplast movement are observable only when internal stores of calcium are affected by Ca2+-antagonists. We suggest that the calcium involved in blue-light-induced chloroplast movement is derived from intracellular stores. The addition of Mg2+ to EGTA buffer counteracted its effect, indicating that Mg2+, as well as Ca2+, might possibly be involved in chloroplast movement.Abbreviations EGTA ethylene glycol-bis(2-aminoethylether)-N,N,N,N-tetraacetic acid - Hepes 4(2-hydroxyethyl-1-piperazine) ethanesulfonic acid - A23187 calcium ionophore We express our gratitude to Professor W. Korohoda for valuable critical comments on this paper and stimulating discussion. We also thank Mr. P. Malec for help in preparing the experiment with trifluoperazine and Mr. A. Waloszek for taking the photographs. We are indebted to Mr. Tim Kline (International House, Krakow, Poland) for improving the English style. This research was supported by grant No. 1042/P2/92/03 from the State Committe for Scientific Research.  相似文献   

19.
Summary Unidirectional fluxes of35SO4 across and into rabbit ileal epithelium were measured under short-circuit conditions, mostly at a medium SO4 concentration of 2.4mm. Unidirectional mucosa (m)-to-serosa (s) ands-to-m fluxes (J ms,J sm) were 0.456 and 0.067 moles hr–1 cm–2, respectively.J ms was 2.7 times higher in distal ileum than in mid-jejunum. Ouabain abolished net SO4 transport (J net) by reducingJ ms. Epinephrine, a stimulus of Cl absorption, had no effect on SO4 fluxes. Theophylline, a stimulus of Cl secretion, reducedJ ms without affectingJ sm, causing a 33% reduction inJ net. Other secretory stimuli (8-Br-cAMP, heat-stable enterotoxin, Ca-ionophore A23187) had similar effects. Replacement of all Cl with gluconate markedly reducedJ net through both a decrease inJ ms and an increase inJ sm. The anion-exchange inhibitor, 4-acetoamido-4-isothiocyano-2,2-sulfonic acid stilbene (SITS), when added to the serosal side, reducedJ ms by 94%, nearly abolishingJ net. SITS also decreasedJ sm by 75%. Mucosal SITS (50 m) was ineffective. 4,4-diisothiocyano-2,2-sulfonic acid stilbene (DIDS) had effects similar to SITS but was less potent. Measurements of initial rates of epithelial uptake from the luminal side (J me) revealed the following: (1)J me is a saturable function of medium concentration with aV max of 0.94 moles hr–1 cm–2 and aK 1/2 of 1.3mm; (2) replacing all Na with choline abolishedJ me; (3) replacing all Cl with gluconate increasedJ me by 40%; (4) serosal SITS had no effect onJ me; and (5) stimuli of Cl secretion had no effect onJ me or increased it slightly. Determination of cell SO4 with35SO4 indicated that, at steady-state, the average mucosal concentration is 1.1 mmoles per liter cell water, less than half the medium concentration. Cell SO4 was increased to 3.0mm by adding SITS to the serosal side. Despite net transport rates greater than 1.4 Eq hr–1 cm–2, neither addition of SO4 to the SO4-free medium nor addition of SITS to SO4-containing medium altered short-circuit current. The results suggest that (1) ileal SO4 absorption consists of Na-coupled influx (symport) across the brush border and Cl-coupled efflux (antiport) across the basolateral membrane; (2) the overall process is electrically neutral; (3) the medium-to-cell Cl concentration difference may provide part of the driving force for net SO4 absorption; and (4) since agents affecting Cl fluxes (both absorptive and secretory) have little effect on SO4 fluxes, the mechanisms for their transcellular transports are under separate regulation.  相似文献   

20.
The intracellular concentration of cAMP in the green alga Chlorella fusca was in the range of 2 · 10-9 to 10-8 moles/g dry weight and was strongly dependent on the growth conditions. The cAMP level was high with high light intensity, low nitrate or glucose concentration. Intracellular cAMP increased only by factor of 2 when high amounts (up to 10-3 M) of cAMP were added to the medium. Most of the given cAMP was converted to 5-AMP.Addition of cAMP had little effect on the chlorophyll content of the cells, only at 10-6 M some enhancement in photoautotrophic cultures was observed. On the other hand high amounts of cAMP in the medium increased the growth rate. DBcAMP* showed a positive effect on chlorophyll synthesis and growth rate at much lower concentrations compared to cAMP.Stimulation effects of exogenous cAMP on the synthesis of chlorophyll were also observed in mixotrophic cultures with a high glucose/nitrate ratio, conditions where chlorophyll synthesis is repressed. Similar to autotrophic conditions DBcAMP was more effective than cAMP.These data indicate that cAMP may act in a system controlling the chlorophyll content of the cells in response to nutrients or light.Abbreviation DBcAMP* N6-2-O-dibutyryl-adenosine-35-monophosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号