首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling. Membrane traffic was inhibited in Chinese hamster ovary cells by expression of dominant-negative (E329Q) N-ethylmaleimide-sensitive fusion protein (NSF) or a truncated form of the SNARE SNAP23. Integrin signaling was monitored as cells were plated on fibronectin under serum-free conditions. E329Q-NSF expression inhibited phosphorylation of focal adhesion kinase (FAK) on Tyr397 at early time points of adhesion. Phosphorylation of FAK on Tyr576, Tyr861 and Tyr925 was also impaired by expression of E329Q-NSF or truncated SNAP23, as was trafficking, localization and activation of Src and its interaction with FAK. Decreased FAK-Src interaction coincided with reduced Rac activation, decreased focal adhesion turnover, reduced Akt phosphorylation and lower phosphatidylinositol 3,4,5-trisphosphate levels in the cell periphery. Over-expression of plasma membrane-targeted Src or phosphatidylinositol 3-kinase (PI3K) rescued cell spreading and focal adhesion turnover. The results suggest that SNARE-dependent trafficking is required for integrin signaling through a FAK/Src/PI3K-dependent pathway.  相似文献   

2.

Background

Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells.

Methods

By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay.

Results

The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro) than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects.

Conclusion

The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.  相似文献   

3.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   

4.
5.
The human cytomegalovirus-encoded chemokine receptor US28 induces arterial smooth muscle cell (SMC) migration; however, the underlying mechanisms involved in this process are unclear. We have previously shown that US28-mediated SMC migration occurs by a ligand-dependent process that is sensitive to protein-tyrosine kinase inhibitors. We demonstrate here that US28 signals through the non-receptor protein-tyrosine kinases Src and focal adhesion kinase (FAK) and that this activity is necessary for US28-mediated SMC migration. In the presence of RANTES (regulated on activation normal T cell expressed and secreted), US28 stimulates the production of a FAK.Src kinase complex. Interestingly, Src co-immunoprecipitates with US28 in a ligand-dependent manner. This association occurs earlier than the formation of the FAK.Src kinase complex, suggesting that US28 activates Src before FAK. US28 binding to RANTES also promotes the formation of a Grb2.FAK complex, which is sensitive to treatment with the Src inhibitor PP2, further highlighting the critical role of Src in US28 activation of FAK. Human cytomegalovirus US28-mediated SMC migration is inhibited by treatment with PP2 and through the expression of either of two dominant negative inhibitors of FAK (F397Y and NH2-terminal amino acids 1-401). These findings demonstrate that activation of FAK and Src plays a critical role in US28-mediated signaling and SMC migration.  相似文献   

6.
Grigston JC  Osuna D  Scheible WR  Liu C  Stitt M  Jones AM 《FEBS letters》2008,582(25-26):3577-3584
  相似文献   

7.
8.
Myofibroblast differentiation and activation by transforming growth factor-beta1 (TGF-beta1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-beta1 and adhesion-dependent signals. TGF-beta1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-beta receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-beta1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-beta1-induced alpha-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of alpha-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-beta1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-beta1/Smad signaling.  相似文献   

9.
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.  相似文献   

10.
Activation of protein kinase C (PKC) plays an important role in the negative regulation of receptor signaling, but its effect on insulin-like growth factor-1 (IGF-1) receptor signaling remains unclear. In this study, we characterized the intracellular pathways involved in IGF-1-induced activation of Akt and evaluated the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on the Akt activation by IGF-1. IGF-1 induced a time- and concentration-dependent activation of Akt. The effect of IGF-1 was blocked by the phosphatidylinositide 3-kinase (PI3K) inhibitors LY294002 (50 micrometer) and wortmannin (0.5 micrometer), but not by the MEK inhibitor PD98059 (50 micrometer) or the p70 S6 kinase pathway inhibitor rapamycin (50 nm), suggesting that the stimulation of Akt by IGF-1 is mediated by the PI3K pathway. Interestingly, cotreatment with PMA (400 nm) attenuated IGF-1-induced activation of Akt. The attenuation was blocked completely by the PKC inhibitor GO6983 (0.5 micrometer), but only partially by the MEK inhibitor PD98059 (50 micrometer), indicating that MAPK-dependent and -independent pathways are involved. PMA induced the activation of PKC in PC12 cells, and this induction was blocked by GO6983. These data further support the role of PKC in the effect of PMA. Moreover, PKCdelta is likely involved in the action of PMA on the basis of data obtained using isoform-specific inhibitors such as rottlerin. PMA also decreased IGF-1-induced tyrosine phosphorylation of insulin receptor substrate-1 and its association with PI3K. Taken together, these results suggest, for the first time, that stimulation of PKC modulates IGF-1-induced activation of Akt.  相似文献   

11.
PC12 cells exhibit precise temporal control of growth factor signaling in which stimulation with epidermal growth factor (EGF) leads to transient extracellular signal-regulated kinase (ERK) activity and cell proliferation, whereas nerve growth factor (NGF) stimulation leads to sustained ERK activity and differentiation. While cyclic AMP (cAMP)-mediated signaling has been shown to be important in conferring the sustained ERK activity achieved by NGF, little is known about the regulation of cAMP and cAMP-dependent protein kinase (PKA) in these cells. Using fluorescence resonance energy transfer (FRET)-based biosensors localized to discrete subcellular locations, we showed that both NGF and EGF potently activate PKA at the plasma membrane, although they generate temporally distinct activity patterns. We further show that both stimuli fail to induce cytosolic PKA activity and identify phosphodiesterase 3 (PDE3) as a critical regulator in maintaining this spatial compartmentalization. Importantly, inhibition of PDE3, and thus perturbation of the spatiotemporal regulation of PKA activity, dramatically increases the duration of EGF-stimulated nuclear ERK activity in a PKA-dependent manner. Together, these findings identify EGF and NGF as potent activators of PKA activity specifically at the plasma membrane and reveal a novel regulatory mechanism contributing to the growth factor signaling specificity achieved by NGF and EGF in PC12 cells.  相似文献   

12.
The interleukin-1 (IL-1) receptor colocalizes with focal adhesion complexes (FACs), actin-enriched structures involved in cell adhesion and signaling in fibroblasts and chondrocytes. The colocalization of FACs and IL-1 receptors has been implicated in the restriction of IL-1 signaling transduction to ERK; however, the mechanism of this restriction and the requirement of IL-1 receptor-associated proteins have not been characterized. We determined if the association kinetics of the interleukin-1 receptor-associated kinase (IRAK) colocalizes with FACs and the requirement for IRAK in IL-1-dependent ERK activation. Human gingival fibroblasts were incubated with collagen-coated beads to induce the assembly of FACs at sites of cell-bead contact. Immunoblot analysis of bead-isolated FACs showed a time-dependent assembly of the focal adhesion proteins beta-actin, vinculin, and talin, which was blocked by the actin monomer sequestering toxin latrunculin B. Although no IRAK was isolated with FACs from unstimulated cells, phosphorylated IRAK was transiently associated with FACs isolated from IL-1beta-stimulated fibroblasts. Fibroblasts plated on tissue culture plastic (which permitted the formation of focal adhesions) showed phosphorylation of ERK, JNK, and p38. Cells plated on poly-l-lysine (to prevent the formation of focal adhesions) showed activation only of JNK and p38. ERK activation was partially restored by incubating cells plated on poly-l-lysine with collagen-coated beads before IL-1 stimulation. Cells treated with latrunculin B or swinholide A, which caused a progressive depolymerization of actin filaments, showed a reduction or elimination of IL-1-induced ERK activation, respectively. Fibroblasts electroinjected with a mouse monoclonal anti-IRAK antibody to block the recruitment of IRAK into FACs failed to activate ERK after IL-1 treatment, indicating that FAC-associated IRAK is required for the activation of ERK. These data indicate that the integrity of actin filament arrays and the recruitment of IRAK into focal adhesions are involved in the restriction of IL-1 signaling to ERK.  相似文献   

13.
《Cellular signalling》2014,26(9):1846-1852
The 5-HT1A receptor is a G protein coupled receptor (GPCR) that activates G proteins of the Gαi/o family. 5-HT1A receptors expressed in the raphe, hippocampus and prefrontal cortex are implicated in the control of mood and are targets for anti-depressant drugs. Regulators of G protein signaling (RGS) proteins are members of a large family that play important roles in signal transduction downstream of G protein coupled receptors (GPCRs). The main role of RGS proteins is to act as GTPase accelerating proteins (GAPs) to dampen or negatively regulate GPCR-mediated signaling. We have shown that a mouse expressing Gαi2 that is insensitive to all RGS protein GAP activity has an anti-depressant-like phenotype due to increased signaling of postsynaptic 5-HT1A receptors, thus implicating the 5-HT1A receptor–Gαi2 complex as an important target. Here we confirm that RGS proteins act as GAPs to regulate signaling to adenylate cyclase and the mitogen-activated protein kinase (MAPK) pathway downstream of the 5-HT1A receptor, using RGS-insensitive Gαi2 protein expressed in C6 cells. We go on to use short hairpin RNA (shRNA) to show that RGS19 is responsible for the GAP activity in C6 cells and also that RGS19 acts as a GAP for 5-HT1A receptor signaling in human neuroblastoma SH-SY5Y cells and primary hippocampal neurons. In addition, in both cell types the synergy between 5-HT1A receptor and the fibroblast growth factor receptor 1 in stimulating the MAPK pathway is enhanced following shRNA reduction of RGS19 expression. Thus RGS19 may be a viable new target for anti-depressant medications.  相似文献   

14.
Migration of hemopoietic stem and progenitor cells (HSPC) is required for homing to bone marrow following transplantation. Therefore, it is critical to understand signals underlying directional movement of HSPC. Stromal cell-derived factor-1 (SDF-1)/CXCL12 is a potent chemoattractant for HSPC. In this study, we demonstrate that the serine-threonine protein phosphatase (PP)2A plays an important role in regulation of optimal level and duration of Akt/protein kinase B activation (a molecule important for efficient chemotaxis), in response to SDF-1. Inhibition of PP2A, using various pharmacological inhibitors of PP2A including okadaic acid (OA) as well as using genetic approaches including dominant-negative PP2A-catalytic subunit (PP2A-C) or PP2A-C small interfering RNA, in primary CD34(+) cord blood (CB) cells led to reduced chemotaxis. This was associated with impairment in polarization and slower speed of movement in response to SDF-1. Concomitantly, SDF-1-induced Akt phosphorylation was robust and prolonged. Following SDF-1 stimulation, Akt and PP2A-C translocate to plasma membrane with enhanced association of PP2A-C with Akt observed at the plasma membrane. Inhibition of PI3K by low-dose LY294002 partially recovered chemotactic activity of cells pretreated with OA. In addition to chemotaxis, adhesion of CD34(+) cells to fibronectin was impaired by OA pretreatment. Our study demonstrates PP2A plays an important role in chemotaxis and adhesion of CD34(+) CB cells in response to SDF-1. CD34(+) CB cells pretreated with OA showed impaired ability to repopulate NOD-SCID mice in vivo, suggesting physiological relevance of these observations.  相似文献   

15.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

16.
17.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

18.
Filamin A is an established structural component of cell-matrix adhesion sites. In addition, it serves as a scaffold for the subcellular targeting of different signaling molecules. Protein kinase C (PKC) has been found associated with filamin; however, details about this interaction and its significance for cell-matrix adhesion-dependent signaling have remained elusive. We performed a yeast two-hybrid analysis using protein kinase Calpha as a bait and identified filamin as a direct binding partner. The interaction was confirmed in transfected HeLa cells, and serial truncation fragments of filamin A were employed to identify two binding sites on filamin. In vitro ligand binding assays revealed a Ca2+ and phospholipid-dependent association of the regulatory domain of protein kinase C with these sites. Phosphorylation of filamin was found to be isoform-restricted, leading to phosphate incorporation in the C termini of filamin A and C, but not B. PKC-dependent phosphorylation of filamin was also detected in cells. Our data suggest an intimate interaction between filamin and PKC in cell signaling.  相似文献   

19.
Hypoxia/reoxygenation injury in vitro causes endothelial cell cytoskeletal rearrangement that is related to increased monolayer permeability. Nonmuscle filamin (ABP-280) promotes orthogonal branching of F-actin and links microfilaments to membrane glycoproteins. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) for 1–60 min, with or without modulators of cAMP-dependent second-messenger pathways, and evaluated for changes in filamin distribution, cAMP levels, and the formation of gaps at interendothelial junctions. Filamin translocates from the membrane-cytoskeletal interface to the cytosol within 1 min of exposure to H2O2. This is associated with a decrease in endothelial cell cAMP levels from 83 pmoles/mg protein to 15 pmoles/mg protein. Intercellular gaps form 15 min after H2O2 treatment and progressively increase in number and diameter through 60 min. Both filamin redistribution and actin redistribution are associated with decreased phosphorylation of filamin and are prevented by activation of the cAMP-dependent protein kinase pathway. A synthetic peptide corresponding to filamin's C-terminal, cAMP-dependent, protein kinase phosphorylation site effectively induces filamin translocation and intercellular gap formation, which suggests that decreased phosphorylation of filamin at this site causes filamin redistribution and destabilization of junctions. These data indicate that H2O2-induced filamin redistribution and interendothelial cell gap formation result from inhibition of the cAMP-dependent protein kinase pathway. J. Cell. Physiol. 172:373–381, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Focal adhesion kinase (FAK) integrates various extracellular and intracellular signals and is implicated in a variety of biological functions, but its exact role and downstream targeting signals in the regulation of apoptosis in intestinal epithelial cells (IECs) remains unclear. The current study tested the hypothesis that FAK has an antiapoptotic role in the IEC-6 cell line by altering NF-B signaling. Induced FAK expression by stable transfection with the wild-type (WT)-FAK gene increased FAK phosphorylation, which was associated with an increase in NF-B activity. These stable WT-FAK-transfected IECs also exhibited increased resistance to apoptosis when they were exposed to TNF- plus cycloheximide (TNF-/CHX). Specific inhibition of NF-B by the recombinant adenoviral vector containing the IB superrepressor prevented increased resistance to apoptosis in WT-FAK-transfected cells. In contrast, inactivation of FAK by ectopic expression of dominant-negative mutant of FAK (DNM-FAK) inhibited NF-B activity and increased the sensitivity to TNF-/CHX-induced apoptosis. Furthermore, induced expression of endogenous FAK by depletion of cellular polyamines increased NF-B activity and resulted in increased resistance to TNF-/CHX-induced apoptosis, both of which were prevented by overexpression of DNM-FAK. These results indicate that increased expression of FAK suppresses TNF-/CHX-induced apoptosis, at least partially, through the activation of NF-B signaling in IECs. polyamines; -difluoromethylornithine; X-linked inhibitor of apoptosis protein; IB  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号