首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The phytoplankton community and cyanotoxins in Lake Chivero (formerly Lake McIlwaine) and the presence of cyanotoxins in treated drinking water were investigated between 2003 and 2004. A typical seasonal succession of Cyanobacteria species occurred from January to April, Bacillariophyta from May to July, and Cryptophyta and Chlorophyta from August to December. Microcystis aeruginosa and M. wesenbergii, known producers of the toxin microcystin, and the non-toxic cyanobacterium M. novacekii dominated during summer. The highest concentrations of microcystins and lipopolysaccharide endotoxins occurred when cyanobacterial biomass was highest. Lipopolysaccharide endotoxin concentrations in the lake ranged between 8 and 3 200 Endotoxin Units (EU) ml?1. Microcystin concentrations in treated water were below the recommended safe limit for drinking water. Lipopolysaccharide endotoxin concentrations in treated water ranged from 0.15 to 11 EU ml?1. The phytoplankton community comprised non-microcystin-producing species for the greater part of the study period.  相似文献   

2.
Ongoing changes in natural diversity due to anthropogenic activities can alter ecosystem functioning. Particular attention has been given to research on biodiversity loss and how those changes can affect the functioning of ecosystems, and, by extension, human welfare. Few studies, however, have addressed how increased diversity due to establishment of nonindigenous species (NIS) may affect ecosystem function in the recipient communities. Marine algae have a highly important role in sustaining nearshore marine ecosystems and are considered a significant component of marine bioinvasions. Here, we examined the patterns of respiration and light‐use efficiency across macroalgal assemblages with different levels of species richness and evenness. Additionally, we compared our results between native and invaded macroalgal assemblages, using the invasive brown macroalga Sargassum muticum (Yendo) Fensholt as a model species. Results showed that the presence of the invader increased the rates of respiration and production, most likely as a result of the high biomass of the invader. This effect disappeared when S. muticum lost most of its biomass after senescence. Moreover, predictability–diversity relationships of macroalgal assemblages varied between native and invaded assemblages. Hence, the introduction of high‐impact invasive species may trigger major changes in ecosystem functioning. The impact of S. muticum may be related to its greater biomass in the invaded assemblages, although species interactions and seasonality influenced the magnitude of the impact.  相似文献   

3.
Robin Kennish 《Oecologia》1997,109(2):209-218
 Rocky shores in Hong Kong experience marked seasonal differences in climate resulting in seasonal changes in macroalgal assemblages. The tropical rocky shore crab, Grapsus albolineatus, feeds selectively on filamentous algae through the year but the abundance of these algae and foliose algae is greatly reduced during the summer when encrusting algae dominate the shores and the crab’s diet. This switch in diet may have implications for the reproductive output of this crab. Standing crop of algae varied greatly through the year, peaking in March and April, when the nutritional quality of the algae was also highest. On the shore, available algal protein and energy were both lowest in July. The crab selected an algal diet rich in nutrients than that available to it on the shore for all months of the year except September to December for protein, and July and August for energy. The input of animal matter considerably increased the protein content of the diet, but made little difference to the energy content. Growth and body condition were greatest during March and June, coinciding with the peak in algal biomass. Storage of nutrients in the hepatopancreas of G. albolineatus commenced in November, coinciding with the increase in biomass and quality of algae on the shores, and then, peaking in May and June, these nutrients were utilised by the reproductive organs during the reproductive season which ran from April to November. The middle of the reproductive season coincided with the period when the standing crop of algae on the shore was at its lowest levels and poorest quality. Cycles of growth, reproduction and storage in G. albolineatus appear to be directly influenced by seasonal patterns of algal food availability. Nutrient storage in the hepatopancreas, during periods when food is nutritionally rich and is most abundant, does not guarantee reproductive success of the crab, but appears to be a prerequisite. Selection of an optimal diet (energy- and protein-rich) in a seasonal environment by ingesting abundant nutrient-rich algal species and the opportunistic consumption of animal matter strongly influences growth and reproductive output of G. albolineatus. Received: 18 March 1996 / Accepted: 17 July 1996  相似文献   

4.
Anthropogenically induced global climate change has important implications for marine ecosystems with unprecedented ecological and economic consequences. Climate change will include the simultaneous increase of temperature and CO2 concentration in oceans. However, experimental manipulations of these factors at the community scale are rare. In this study, we used an experimental approach in mesocosms to analyse the combined effects of elevated CO2 and temperature on macroalgal assemblages from intertidal rock pools. Our model systems were synthetic assemblages of varying diversity and understory component and canopy species identity. We used assemblages invaded by the non‐indigenous canopy forming alga Sargassum muticum and assemblages with the native canopy species Cystoseira tamariscifolia. We examined the effects of both climate change factors on several ecosystem functioning variables (i.e. photosynthetic efficiency, productivity, respiration and biomass) and how these effects could be shaped by the diversity and species identity of assemblages. CO2 alone or in combination with temperature affected the performance of macroalgae at both individual and assemblage level. In particular, high CO2 and high temperature (20°C) drastically reduced the biomass of macroalgal assemblages and affected their productivity and respiration rates. The identity of canopy species also played an important role in shaping assemblage responses, whereas species richness did not seem to affect such responses. Species belonging to the same functional effect group responded differently to the same environmental conditions. Data suggested that assemblages invaded with S. muticum might be more resistant in a future scenario of climate change. Thus, in a future scenario of increasing temperature and CO2 concentration, macroalgal assemblages invaded with canopy‐forming species sharing response traits similar to those of S. muticum could be favoured.  相似文献   

5.
6.
Shallow subtidal macroalgal communities in the North-eastern Atlantic archipelagos (Azores, Madeira, Canaries and Cape Verde) were studied in order to identify their spatial organization patterns and the main drivers of change. Fifteen islands and 145 sites across 15º of latitude and 2850 km were sampled. We found high spatial variability across the scales considered (archipelago, island and site). The structure of macroalgal communities differed among archipelagos, except between Madeira and the Canaries, which were similar. Across a latitudinal gradient, macroalgal communities in the Azores were clearly separated from the other archipelagos; communities in Madeira and the Canaries occupied an intermediate position, while those in Cape Verde appeared at the opposite end of the gradient. In the Azores, species with warm-temperate affinities dominated communities. Cape Verde communities were, in contrast, dominated by tropical taxa, whereas in the subtropical Canaries and Madeira there was a mixture of species with colder and warmer affinities. Apart from crustose coralline algae, the Dictyotales were the group with greatest cover; larger and longer-lived species were progressively replaced by short-lived species along a latitudinal gradient from north to south. The perennial species Zonaria tournefortii dominated the sea-bottom in the Azores, the semi-perennial Lophophora variegata in the Canaries, the filamentous algae in Madeira and the ephemeral Dictyota dichotoma in Cape Verde. We hypothesized that the differences among archipelagos could be explained by synergies between temperature and herbivory, which increased in diversity southwards, especially in Cape Verde. This was supported by the predominance of non-crustose macroalgae in the Azores and of crustose macroalgae in Cape Verde, as would be predicted from the greater herbivore activity. At the scale of islands and sites, the same set of environmental variables drove differences in macroalgal community structure across all the Macaronesian archipelagos.  相似文献   

7.
Ultraviolet radiation (UVR) research on marine macroalgae has hithero focussed on physiological effects at the organism level, while little is known on the impact of UV radiation on macroalgal assemblages and even less on interactive effects with other community drivers, e.g. consumers. Field experiments on macrobenthos are scarce, particularly in the Antarctic region. Therefore, the effects of UVR and consumers (mainly limpets were excluded) on early successional stages of a hard bottom macroalgal community on King George Island, Antarctica, were studied. In a two‐factorial design experimental units [(1) ambient radiation, 280–700 nm; (2) ambient minus UVB, 320–700 nm and (3) ambient minus UVR, 400–700 nm vs. consumer–no consumer] were installed between November 2004 and March 2005 (n= 4 plus controls). Dry mass, species richness, diversity and composition of macroalgal assemblages developing on ceramic tiles were followed. Consumers significantly suppressed green algal recruits and total algal biomass but increased macroalgal richness and diversity. Both UVA and UVB radiation negatively affected macroalgal succession. UVR decreased the density of Monostroma hariotii germlings in the first 10 weeks of the experiment, whereas the density of red algal recruits was significantly depressed by UVR at the end of the study. After 106 days macroalgal diversity was significantly higher in UV depleted than in UV‐exposed assemblages. Furthermore, species richness was significantly lower in the UV treatments and species composition differed significantly between the UV‐depleted and the UV‐exposed treatment. Marine macroalgae are very important primary producers in coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Both, UVR and consumers significantly shape macroalgal succession in the Antarctic intertidal. Consumers, particularly limpets can mediate negative effects of ambient UVR on richness and diversity till a certain level. UVB radiation in general and an increase of this short wavelength due to stratospheric ozone depletion in particular may have the potential to affect the zonation, composition and diversity of Antarctic intertidal seaweeds altering trophic interactions in this system.  相似文献   

8.
Abstract This study reports on preliminary findings of habitat‐contingent temporal variability in ant assemblages in Purnululu National Park in northern Australia's semiarid tropics, by sampling at the end of the dry season (October 2004) and the end of the wet season (April 2005). Six grids of 15 pitfall traps were established in each of the spinifex, sandplain and gorge habitats. Community composition was dominated by behaviourally dominant ants (Iridomyrmex spp.) and climate specialists (Melophorus and Meranoplus spp.). Ant activity was higher in the wet season sampling period, with greater species richness and abundance. Interestingly, temporal variation in ant assemblage richness, abundance and composition varied markedly with habitat type. While there were large differences between sampling periods for the spinifex and sandplain habitat, this was not the case in the gorges. These temporal changes in ant assemblages are postulated to be linked with major environmental differences between the two sampling periods, driven by seasonal climatic conditions. It is likely that these changes influenced the ant assemblages through species differences in physiological tolerance levels, ecological requirements and competitive ability. This study demonstrates the need, in highly seasonal environments, to consider the temporal context of studies in relation to habitat type, particularly when undertaking biodiversity surveys and monitoring.  相似文献   

9.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

10.
Summary Sedimentation of phytoplankton provides food and energy for zoobenthic communities. In this study the rates, species composition and biomass of phytoplankton input to Frobisher Bay sediments were examined during ice (late November to July) and open water (late July to October) periods from 1982 to 1985. The rates were higher on the sea bed than at 20 m. The minimum rate (3x105 cells·m-2·day-1) of sedimentation occurred during the early part of the ice period. It increased as the ice thickened and reached a maximum of 2.8x108 cells·m-2·day-1 after the phytoplankton bloom at the beginning of the open water period in the first two weeks of August. The sedimented phytoplankton was dominated by diatoms, with a great majority of pennate species during the spring (April to June) and centric forms during the summer (July to August). Green flagellates, dinoflagellates and chrysophytes occurred as a low percentage of the total population in all seasons. Other indicators (chlorophyll a and phaeopigments) showed highest biomass levels in the deepest traps. They were consistently low during the winter (December to March) and reached their maxima during the open-water period of summer. Their abundance was correlated with the seasonal cycle of the phytoplankton in the water column.  相似文献   

11.
Temperate Australia has a speciose highly endemic algal flora. This study explored the influence of geographical isolation between islands, depth and exposure to ocean swells on the diversity of macroalgae in the Recherche Archipelago (Western Australia). Macroalgae were harvested (0.25‐m2 quadrats) from sites at two exposures (sheltered and exposed to wave energy), three depths (<10, 10–20, and 21–28 m), and two island groups (three islands within Esperance Bay and three islands outside the bay). A total of 220 species were collected. Species richness and biomass were significantly different at the smallest spatial scale (0.25 m2), and density of overstory species decreased with depth. Results from analysis of similarity tests suggested that macroalgal assemblages differed with depth, exposure and to a lesser extent with island group. Assemblage differences were often associated with particular overstory or understory taxa and not the entire assemblage composition. Average species richness·0.25 m?2 ranged from 13 to 29 species, typically with a few species contributing more than 50% of average biomass. Species richness was maintained by species turnover at the 0.25‐m2 spatial scale. Our results suggest that richness in temperate Australia is maintained by turnover of broadly distributed species. More dominant species in assemblages were associated with differences in depth and exposure to ocean swells. Our findings support the hypothesis of a geographical transition of dominant species from kelp‐dominated in the west to a fucalean‐dominated assemblage in the Recherche Archipelago and east of the Great Australian Bight.  相似文献   

12.
Seasonal patterns (i.e., December 1986, and April and October 1987) in benthic macroinfaunal abundance,distribution, and taxa composition at 19 sites in Perdido Bay, AL/FL, are evaluated to assess the relative importance of environmental factors as determinants of community structure. A total of 46 taxa from five phyla were collected with diver-held bottom corers. Polychaetes were numerically dominant followed by crustaceans. Seventeen taxa co-occurred in samples during all three study periods. Maximum animal densities and taxa richness showed no statistically significant bay-wide seasonal pattern,however, a bay-wide trend was detected where these response parameters tended to be greater in April than December or October. Deeper upper bay stations were depauperate during December and October. Low dissolved oxygen (DO) largely explained the depauperate pattern. Mean taxa richness per core(10 cm dia.) ranged from 0.0 to 5.0, 1.2 to 4.6, and0.0 to 4.4 in December, April and October,respectively. Mean densities ranged from zero to 368,0 to 960, and 0 to 430 individuals per 0.1 m2 in December, April, and October, respectively. Results of a three-season statistical regression model indicated that DO deficiency was a primary determinant of taxa richness (partial R 2: 0.27) but was less important in explaining animal densities (partialR 2: 0.16). For December, when additional environmental variables were measured, DO was supplanted by weight loss on ignition (R 2: 0.24)and the sediment C:N ratio (R 2: 0.44) as highest explanatory factors for taxa richness and density,respectively. Application of a benthic index of environmental condition indicated wide-spread ecological stress on the benthic macroinfaunal assemblages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The seasonal fluctuations of fungi were studied in 72 soil samples collected at 10-day intervals between January 1972 and December 1973. The richest periods in the fungal population were January, March and September–December 1972, and April, May, September, November and December 1973. The poorest months were consistently June and July of 1972 and 1973 and August 1973 which are all summer months. Thirty-nine genera were isolated of which Aspergillus, Penicillium, Fusarium, Mucor, Rhizopus and Humicola were of high seasonal occurrence. Seven genera were of moderate occurrence and these were Cochliobolus,Stachybotrys, Paecilomyces, Cunninghamella, Myrothecium, Chaetomium and Sepedonium. The remaining genera were of low or rare seasonal occurrence. Aspergillus showed its highest prevalence during the periods May-September 1972 and April-August 1973. Twenty-four species of Aspergillus in addition to two varieties of A. nidulans were isolated, of which A. niger, A. fumigatus, A. terreus, A. nidulans and A. sydowii were dominant. Thirty species of Penicillium were identified, of which P. notatum, P. funiculosum and P. chrysogenum were of high seasonal occurrence. Penicillium predominated during winter and spring months. Fusarium showed its highest percentage populations during the periods February, March, April, October, November and December 1972 and February, August, September, October and November 1973. Four species of Mucor were recorded of which M. racemosus was the commonest; and its highest percentage populations were recorded in November 1972; and February, March and November 1973 which are moderate temperature months. Rhizopus was represented by two species of which R. nigricans was of high seasonal occurrence. Three species of Humicola were isolated of which H. grisea was the most common.  相似文献   

14.
Rocky macroalgal assemblages are typically composed of patches differing in age and species composition and grazing is generally a very important modifier of such assemblages. We hypothesized that patch colonization time determines its algal community and that grazing effects depend on the colonization time and vary with depth. We created patches by placing empty substrates at two sublittoral depths over five consecutive months, manipulated grazer entry and determined the algal species composition in each patch in the next growing season. Distinct algal colonization periods resulted in different algal assemblages. Although algal communities in our study area consist mainly of opportunistic species, thus being highly dynamic, the resulting macroalgal assemblages differed in species richness, diversity, composition, and total biomass even a year after first colonization. Substrates close to the water-surface supported a higher species richness and diversity than those in the deeper littoral. The community characteristics, total density, total biomass and species richness were only slightly, if at all affected by grazing. However, individual algal species or taxa showed varying and even contrasting responses to grazing, often differently between depths and depending on colonization time. In the deeper littoral, but not close to the water surface, grazing increased the density of filamentous brown algae while reducing the green alga Cladophora glomerata. In these taxa, grazing effects were strongest in patches colonized during the early growing season. Grazing at the colonization stage had lasting consequences for the density of several individual species.  相似文献   

15.
Seasonal population dynamics and the vertical distribution of planktonic ciliates in a hypertrophic and strongly stratified temperate lake were studied from April to October in 2000 and from April to June in 2001. In the epi- and metalimnion the ciliate abundance peaked in spring and late summer, reaching maximum values in the metalimnion (86 cells ml−1) on 7th August 2000. In the epilimnion, the highest biomass content (414 μg C l−1) was observed on 8th May 2000. In the hypolimnion only a late summer peak occurred and the ciliate numbers were always lower than in the epi- and metalimnion. Five groups dominated the community of ciliates: Oligotrichida, Gymnostomatea, Prostomatida, Hymenostomata and Peritrichia, and the community composition varied greatly with depth. In the epilimnion the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and gymnostomes were also numerous. In the metalimnion these groups were gradually replaced by scuticociliates and mixotrophic Coleps spp. In the hypolimnion scuticociliates and species known as benthic migrants dominated. In the epilimnion and upper metalimnion in spring large herbivores and in summer small bacterivores were more numerous.  相似文献   

16.
The seasonal fluctuation in the zooplankton community of Azibo reservoir (Portugal), was studied from November 1986 till November 1987.Fifty-three species of Protozoa, Rotifera, Copepoda and Cladocera were found. The zooplankton community was numerically dominated by rotifers, which represented 66% of the total.The highest rotifer density was reached in the beginning of spring. It decreased after the cladocerans peaked in May.Copepods had two maxima, one in April and another one in September.Although protozoans rose to high densities during winter (1.07 × 105 ind m–3), their contribution to total biomass was small (2.03%).  相似文献   

17.
Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.  相似文献   

18.
Inselbergs are isolated monolithic outcrops which are characterized by large areas of exposed crystalline rock. Due to harsh edaphic and microclimatic conditions, inselbergs are completely differentiated from their surroundings. Consequently they host a very distinct vegetation which is being investigated on a global scale over a six year period. The seasonal dynamics of Selected plant communities (Afrotrilepis pilosa mat, shallow depression, ephemeral flush vegetation) on granitic inselbergs in the Comoe National Park (NE Ivory Coast) were studied during the rainy period from May to November 1991 by recording all vascular plant species at 12 intervals. For the habitats investigated, the seasonal vegetation dynamics were related to the rainfall pattern. Maximum values both in species diversity and richness were attained in the first third of the rainy period. Drought in August and September caused a decline in species number and diversity in the shallow depression and ephemeral flush vegetation, resulting in mortality of more than 20% of the species. The individual communities studied differed considerably in species diversity and richness. We conclude that ephemeral flush and shallow depression communities are more species rich than the mat community which is dominated by the highly competitive and specialized K-strategist Afrotrilepis pilosa (a poikilohydric Cyperaceae) due to stochastic climatic perturbations which allow the maintenance of species rich non-equilibrium assemblages with r-strategists as major components.  相似文献   

19.
张敏  蔡庆华  渠晓东  邵美玲 《生态学报》2017,37(13):4483-4494
水库生态系统演替是水库生态学研究及水库管理过程中都比较关注的问题。三峡水库自2003年6月成库以来,有关水库生态系统演替的研究却鲜见报道。以三峡水库香溪河库湾底栖动物为研究对象,分析了自2003年8月—2010年7月3个不同蓄水阶段底栖动物群落的演变状况,并对库湾纵向分区格局的动态变化进行了探讨。结果表明,水库蓄水后,摇蚊科和颤蚓科成为第一批定殖者,并以摇蚊科为主;随后,颤蚓科中的霍甫水丝蚓逐渐成为优势类群;直到2004年4月仙女虫科的肥满仙女虫与霍甫水丝蚓共同主导群落。一期蓄水后约1a,底栖动物密度和物种数呈现出明显的增长趋势,空间上呈现出"中间高、两头低"的格局。库湾总体密度于2006年4月达到最高值,高达24146个/m2。二期蓄水导致底栖动物总密度显著降低,而三期蓄水后则变化相对较小。随着时间的增长,库湾底栖动物偶见种出现的频率逐渐降低,群落逐渐趋于稳定。基于TWINSPAN(two-way indicator species analysis)的分析,一期蓄水后期,香溪河库湾纵向上底栖动物群落结构呈现出稳定的分区格局,库湾中部区域呈现出相同的群落类型,无季节变化;而自二期蓄水开始,库湾纵向上大部分样点的群落类型发生改变,表明二期蓄水的干扰较强;之后呈现出季节性波动,此种格局与水位的季节波动相关联,表明三峡水库底栖动物逐渐适应水库周期性的调度,群落结构呈现稳定的季节性周期波动。  相似文献   

20.
【目的】2013年10月云南省元谋县首次发现红火蚁。掌握红火蚁蚁巢各品级发生动态,能为当地红火蚁的防控提供技术支撑。【方法】2015年1—12月,在昆明宜良县对红火蚁蚁巢取样、分离,红火蚁取样、称重,统计红火蚁各品级的头数。【结果】地上蚁巢红火蚁蚁群数量发生高峰期在8—9月,其次是3—4月。蚁后数量比例高峰在3—4月;有翅雌蚁比例高峰在4月,其次是7月;有翅雄蚁比例高峰的在5月,其次是9月;生殖蚁幼虫和蛹比例高峰的3、4和12月。地上蚁巢工蚁、兵蚁、职能蚁幼虫和蛹数量发生的高峰期在8—9月,发生小高峰期在4月。【结论】昆明红火蚁蚁群数量动态有2个峰值,第一个峰值为8—9月,以职能蚁防治为主;第二个蜂值3—4月,以生殖蚁和职能蚁防治为主。该结果为昆明红火蚁防控技术提供了数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号