首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the effects of a plasma phospholipid transfer protein on the transfer of phospholipids from very low density lipoproteins (VLDL) to high density lipoproteins (HDL) during lipolysis, biosynthetically labeled rat 32P-labeled VLDL was incubated with human HDL3 and bovine milk lipoprotein lipase (LPL) in the presence of the plasma d greater than 1.21 g/ml fraction or a partially purified human plasma phospholipid transfer protein (PTP). The addition of either the PTP or the d greater than 1.21 g/ml fraction resulted in a 2- to 3-fold stimulation of the transfer of phospholipid radioactivity from VLDL into HDL during lipolysis. In the absence of LPL, the PTP caused a less marked stimulation of transfer of phospholipid radioactivity. Both the d greater than 1.21 g/ml fraction and the PTP enhanced the transfer of VLDL phospholipid mass into HDL, but the percentage transfer of phospholipid radioactivity was greater than that of phospholipid mass, suggesting stimulation of both transfer and exchange processes. Stimulation of phospholipid exchange was confirmed in experiments where PTP was found to augment transfer of [14C]phosphatidylcholine radioactivity from HDL to VLDL during lipolysis. In experiments performed with human VLDL and human HDL3, both the d greater than 1.21 g/ml fraction and the PTP were found to stimulate phospholipid mass transfer from VLDL into HDL during lipolysis. Analysis of HDL by non-denaturing polyacrylamide gradient gel electrophoresis showed that enhanced lipid transfer was associated with only a slight increase in particle size, suggesting incorporation of lipid by formation of new HDL particles. In conclusion, the plasma d greater than 1.21 g/ml fraction and a plasma PTP enhance the net transfer of VLDL phospholipids into HDL and also exchange of the phospholipids of VLDL and HDL. Both the transfer and exchange activities of PTP are stimulated by lipolysis.  相似文献   

2.
Using the dynamic fluorescence quenching method, it was shown that very low density (VLDL) apoproteins (apo B, E and C) tryptophanyls exhibit a lower accessibility towards water-soluble quenchers as compared to apo B LDL chromophores. The efficiency of proteolytic degradation by trypsin of VLDL-associated apo E and apo C was much lower than that of apo B. These results may be due to the cluster arrangement of amphipatic apo E and apo C on the VLDL surface and/or to their partial shielding by apo B. Treatment of VLDL particles with sub-lytic concentrations of the detergent, Tween-20, did not change the relaxation characteristics of amphipatic apoprotein tryptophanyl microenvironment, but resulted in a reversible structural transition registered by a "red" shift of the emission spectrum maximum as well as by change of the iodine quenching pattern. The detergent-induced increase of the VLDL tryptophanyl accessibility to acrylamide and the decrease of the quenching constant at the partial and complete particle solubilization were related to a change of the apo B molecular package. Treatment of VLDL with Tween-20 or cow milk lipoprotein lipase resulted in the appearance of tryptophanyl population that was not involved in the resonance energy transfer to the lipid phase-localized fluorescent probe pyrene, which is indicative of the protein dissociation. Treatment of VLDL particles with sub-lytic concentrations of Tween-20 revealed a lower (compared to apo C) relative affinity of apo E for the VLDL lipid surface. Inhibition of the lipoprotein lipase activity by apoprotein C-III was found to be non-competitive. It was concluded that lipolysis is a self-regulatory process which involves changes in the effector apoprotein concentration on the surface of triglyceride-rich particles.  相似文献   

3.
The interaction of synthetic dimyristoyl phosphatidylcholine (lecithin) liposomes with isolated apoC-I and apoC-III proteins from very low density lipoproteins has been studied by microcalorimetry. Complex formation is a highly exothermal process characterized by a maximal enthalpy of -130 kcal/mol (-544 kJ) apoC-III-1 and -65 kcal/mol apoC-I proteins (-272 kJ). The complex composition determined after its isolation by ultracentrifugal flotation agrees with the value derived from the enthalpy binding curves. The binding of a constant amount of dimyristoyl lecithin to apoprotein mixtures containing various proportions of apoA-I and apoC-III failed to demonstrate the existence of any preferential association between the two apoproteins, in contrast with results obtained previously with apoA-I/apoA-II protein mixtures. Finally the various contributions to the enthalpy of binding such as that arising from an increase in apoprotein helicity have been evaluated. A classification of the apolipoproteins according to their lipid-binding affinity is proposed as: apoA-II congruent to apoC-III greater than apoC-I greater than apoA-I proteins.  相似文献   

4.
We tested the hypothesis that apolipoproteins, the protein constituents of plasma lipoproteins, are secreted into bile. We examined human gallbladder bile obtained at surgery (N = 54) from subjects with (N = 44) and without (N = 10) gallstones and hepatic bile collected by T-tube drainage (N = 9) after cholecystectomy. Using specific radioimmunoassays for human apolipoproteins A-I and A-II, the major apoproteins of high density lipoproteins, for apolipoproteins C-II and C-III, major apoproteins of very low density lipoproteins, and for apolipoprotein B, the major apoprotein of low density lipoproteins, we found immunoreactivity for these five apolipoproteins in every bile sample studied in concentrations up to 10% of their plasma values. Using double immunodiffusion, we observed complete lines of identity between bile samples and purified apolipoproteins A-I, A-II, or C-II. Using molecular sieve chromatography, we found identical elution profiles for biliary apolipoproteins A-I, A-II and B and these same apolipoproteins purified from human plasma. When we added high density lipoproteins purified from human plasma to lipoprotein-free solutions perfusing isolated rat livers, we detected apolipoproteins A-I and A-II in bile. Similarly, when we added low density lipoproteins purified from human plasma to lipoprotein-free solutions perfusing isolated livers of rats treated with ethinyl estradiol in order to enhance hepatic uptake of low-density lipoproteins, we found apolipoprotein B in bile. These data indicate that apolipoproteins can be transported across the hepatocyte and secreted into bile.  相似文献   

5.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

6.
Lipoprotein lipase (LPL) bound to vascular endothelial cells hydrolyses triglycerides in plasma lipoproteins. To explore the role of LPL in atherogenesis, the effect of LPL-mediated lipolysis of very low density lipoproteins (VLDL) on monocyte adhesion to endothelial cells was examined. Adhesion of U937 monocytes to porcine aortic endothelial cells that were incubated with VLDL and purified bovine milk LPL was markedly higher than endothelial cells that were incubated with VLDL alone. The increase in monocyte adhesion obtained with VLDL was dependent on the concentration of the lipoprotein, monocyte dose and time of incubation. The increase in adhesion correlated with generation of free fatty acids from the hydrolysis of triglycerides in VLDL by LPL. Furthermore, direct addition of oleic acid to endothelial cells also increased adhesion of monocytes. We postulate that LPL-derived lipolytic products increase monocyte adhesion to vascular endothelium and thereby promote atherogenesis.  相似文献   

7.
The incorporation of labeled amino acids into the peptides of very low density lipoproteins (VLDL) and high density lipoproteins (HDL) secreted by perfused rat liver was studied using a Ringer-albumin solution in the perfusate in place of serum to diminish exchange of peptides between VLDL and HDL. Among the lipoproteins, the greatest release of protein, greatest incorporation of amino acid, and highest specific activity were found in VLDL. After separation of the delipidated peptides by electrophoresis on polyacrylamide gel, the incorporation into VLDL peptides was found to be 5-10 times as great as into HDL peptides. There was virtually no incorporation into the peptides of low density lipoproteins (LDL). Approximately 25% of the radioactivity incorporated into perfusate VLDL failed to enter the 13% polyacrylamide gel. The remaining radioactivity was distributed primarily among three peptide bands; one, found in the upper portion of the gel, contained 45% of the total, most of the remainder being found in two rapidly migrating bands. These three peptides appear to approximate those of human apo-C in relative electrophoretic mobility. Most of the HDL peptide radioactivity entering the running gel was found in a band that migrates slightly faster than the main VLDL band. A portion of the radioactivity of this major HDL band did not enter the running gel unless beta-mercaptoethanol was present. Greater separation of these two bands by polyacrylamide gel electrophoresis for 24 hr confirmed that the major bands in VLDL and in HDL were different. The rapidly moving peptides of HDL were found to contain very little radioactivity. Determination of the intensity of staining of carrier-free perfusate VLDL and HDL peptides produced a pattern similar to the incorporation of labeled amino acids. It is concluded that the rapidly moving peptides, which may contain activators of lipoprotein lipase, are only secreted as part of the VLDL.  相似文献   

8.
The fate of cholesteryl esters in high density lipoprotein (HDL) was studied to determine whether the transfer of esterified cholesterol from HDL to other plasma lipoproteins occurred to a significant extent in man. HDL cholesteryl ester, labelled in vitro with [3H] cholesterol, was injected into human subjects. Labelling of cholesteryl esters in very low density (VLDL) occurred rapidly and by 3 h, the esterified cholesterol in VLDL reached peak specific radioactivity. The removal rate of cholesteryl esters from HDL appeared to be exponential and of the order of 0.2/h; calculation of the apparent flux was about 150 mg/h which approximates reported values for total cholesterol esterification in human plasma in vivo. The rapid rate of labelling of VLDL from HDL suggests that the transfer of HDL cholesteryl esters to VLDL may represent a significant pathway for the disposal of HDL cholesterol.  相似文献   

9.
10.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

11.
12.
Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn-1,2- and sn-2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn-1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn-1 and sn-3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn-1 and lower in the sn-2 position. These results suggest that the fatty acid of the sn-1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn-2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism.  相似文献   

13.
Selectively labelled lipids have been incorporated into the surface monolayer of human serum low density lipoprotein (LDL) and very low density lipoprotein (VLDL). From 3 to 17 mol% of phosphatidylcholine, selectively deuterated at various positions along the sn-2-acyl chain, was transferred from unilamellar vesicles to VLDL using a partially purified phosphatidylcholine transfer protein. Selectively deuterated palmitic acids were incorporated into LDL (6-20 mol%) and into VLDL (7-10 mol%). Electron microscopy, light scattering, and 31P nuclear magnetic resonance indicated that particle size remained unchanged. Gel exclusion chromatography and chemical analysis showed no difference in hydrodynamic properties and only slight alteration to particle component ratios. Biological activity of labelled VLDL was measured from the rate of cholesterol esterification by cultured J774A.1 cells. Effect of labelling LDL was evaluated by monitoring LDL uptake and degradation by cultured human skin fibroblasts. In all cases the lipoproteins containing labels were indistinguishable from their native counterparts.  相似文献   

14.
A previously unrecognized lipoprotein of very high density was isolated from rat serum. During zonal ultracentrifugation of whole serum or of fractions from Sepharose 4B chromatography, a peak comigrating with a peak of cholesterol was found between the typical high density lipoproteins and the residual serum proteins. Centrifugation of chylomicrons, very low density lipoproteins, and high density lipoproteins, radio-iodinated in their lipid and protein moieties and mixed with serum, did not yield this peak. The pooled fractions contained about 85% protein. The remainder was lipid comprising cholesteryl esters, free cholesterol, triglycerides, phosphatidylcholine, and sphingomyelin. Polyacrylamide gel electrophoresis revealed bands in the region of apolipoproteins E and C as the major components. The composition suggested a lipoprotein, and this was substantiated by electron microscopy which showed particles with a mean diameter of 150 A. Their average hydrated density was 1.23 g/ml and the apparent molecular weight was 1.35 X 10(6). These very high density lipoproteins are characterized by a rapid catabolism as compared to high density lipoproteins. Within 10 min, 84% and 70% of intravenously injected 125I-labeled very high density lipoproteins were removed from plasma of male and female rats, respectively, and did not appear to be converted to lipoproteins of a different density class. Ninety-five percent of the removed 125I was recovered in the liver and the radioactivity per gram of tissue was also highest for the liver. Accordingly, the rate of clearance of 125I-labeled very high density lipoproteins was markedly reduced in functionally eviscerated rats. Radioautography revealed that most of the silver grains representing very high density lipoproteins were associated with hepatocytes and only about 1% was found over v. Kupffer cells. Uptake and degradation by freshly isolated rat hepatocytes were mediated by a saturable and specific binding site. Composition and metabolic pathway are compatible with a function of very high density lipoproteins in the transport of protein and lipids to the liver.  相似文献   

15.
Hypertriglyceridemia is an important risk factor for atherosclerosis, especially in obesity. Macrophages are one of the primary cell types involved in atherogenesis and are thought to contribute to lesion formation through both lipid accumulation and proinflammatory gene expression. In this study, we sought to determine the direct impact of triglyceride (TG)-rich VLDL-induced lipid accumulation on macrophage proinflammatory processes. Incubation of mouse peritoneal macrophages with 100 microg/ml VLDL for 6 h led to 2.8- and 3.7-fold increases in intracellular TGs and FFAs, respectively (P < 0.05). The inflammatory proteins tumor necrosis factor-alpha, interleukin-1beta, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase 3 (MMP3), and macrophage inflammatory protein-1alpha (MIP-1alpha) were all upregulated by at least 2-fold (P < 0.05) in a dose-dependent manner in VLDL-treated macrophages. The increase in inflammatory gene expression coincided with the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway members extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38 MAPK and was ameliorated by U0126, an inhibitor of ERK1/2. Inhibition of extracellular TG hydrolysis with tetrahydrolipstatin (Orlistat) resulted in the absence of intracellular TG and FFA accumulation and was accompanied by the amelioration of ERK1/2 phosphorylation and MIP-1alpha gene expression. These data indicate that VLDL hydrolysis, and the subsequent accumulation of intracellular FFAs and TGs, plays a substantive role in mediating the proinflammatory effects of VLDL. These data have important implications for the direct proatherogenic effects of VLDL on macrophage-driven atherosclerosis.  相似文献   

16.
Lipoproteins in the three major density classes were isolated from the medium of cultured rat hepatocytes incubated in the absence of serum for periods ranging from 1 to 48 h. De novo synthesis was suggested by the cyclo-heximide-sensitive incorporation of [3H]leucine into the apolipoproteins of the secreted lipoproteins.Hepatocyte d < 1.006 and d 1.006−1.063 g/ml lipoproteins were similar to plasma very low density lipoprotein (VLDL) and low density lipoprotein (LDL), respectively, in chemical composition, morphology and apolipoprotein distribution. The isolation of plasma-like d 1.006−1.063 g/ml particles is evidence for the hepatic origin of rat LDL; however, whether these particles are synthesized directly or result from catabolism of secreted VLDL has not been determined. Spherical d 1.063−1.21 g/ml particles containing predominantly apolipoprotein A-I were isolated from the media. In contrast to plasma high density lipoprotein (HDL) the hepatocyte particles contained significant concentrations of triacylglycerol and apolipoproteins of Mr > 100000 and lacked apolipoprotein A-IV.The pattern of lipoprotein secretion was related to the time of incubation. After incubation for 1, 3 and 6.5 h, VLDL comprised approx. 56% of the total lipoprotein mass, LDL 20% and HDL 24%. After 17 and 48 h the VLDL concentration was greatly reduced (approx. 20% of the total mass) while LDL and HDL concentrations were increased (33 and 47% of the total, respectively). Exogenous sodium oleate resulted in a concentration-dependent stimulation of VLDL synthesis at longer incubation periods. The triacylglycerol content of the secreted LDL fraction was also significantly increased following sodium oleate addition and there was an increased number of 425–650 Å particles present, which may represent catabolic products of VLDL. Hepatocyte mono-layers which can be maintained in serum-free media for extended periods should be useful for studying regulation of hepatic metabolism of the three major lipoprotein classes.  相似文献   

17.
The size distributions of electrophoretically isolated subfractions of the very low density human plasma lipoproteins have been determined using electron microscopy. The primary and secondary particles observed in plasma of normal subjects after fat ingestion appear to have similar size distributions. Particles produced by corn oil feeding can be fixed by the osmium tetroxide reaction while those produced by butter fat feeding could not be fixed or made visible by this technique. Good agreement between particle size as measured by electron microscopy and particle size as predicted by ultra-centrifugal analysis was obtained.  相似文献   

18.
These studies were undertaken to examine the effects of lipoprotein lipase (LPL) and cholesteryl ester transfer protein (CETP) on the transfer of cholesteryl esters from high density lipoproteins (HDL) to very low density lipoproteins (VLDL). Human or rat VLDL was incubated with human HDL in the presence of either partially purified CETP, bovine milk LPL or CETP plus LPL. CETP stimulated both isotopic and mass transfer of cholesteryl esters from HDL into VLDL. LPL caused only slight stimulation of cholesteryl ester transfer. However, when CETP and LPL were both present, the transfer of cholesteryl esters from HDL into VLDL remnants was enhanced 2- to 8-fold, compared to the effects of CETP alone. The synergistic effects of CETP and LPL on cholesteryl ester transfer were more pronounced at higher VLDL/HDL ratios and increased with increasing amounts of CETP. In time course studies the stimulation of cholesteryl ester transfer activity occurred during active triglyceride hydrolysis. When lipolysis was inhibited by incubating LPL with either 1 M NaCl or 2 mM diethylparanitrophenyl phosphate, the synergism of CETP and LPL was reduced or abolished, and LPL alone did not stimulate cholesteryl ester transfer. These experiments show that LPL enhances the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. This property of LPL is related to lipolysis.  相似文献   

19.
The chemical properties of very low density and high density lipoproteins of adult bullfrog serum were determined. This serum contained extremely low levels of both very low density lipoprotein (10-30 mg/100 ml) and high density lipoprotein (5-10 mg/100 ml). The constituents of very low density lipoprotein, on a weight percentage basis, were found to be 48.1% triglyceride, 17.3% cholesterol ester, 8.8% cholesterol, 11.6% phospholipid, and 12% protein. These constituents were also present in high density lipoprotein with weight percentage values of 3.7%, 19.3%, 11.9%, 25.2%, and 36.8%, respectively. The fatty acid compositions of the triglycerides, cholesterol esters, and phosphatidylcholine were quite similar in the very low density lipoprotein and high density lipoprotein. However, shingomyelin fatty acid composition was appreciably different in the two lipoproteins. Disc gel electrophoresis in sodium dodecyl sulfate-polyacrylamide gels produced patterns with one major (approximate molecular weight, 7,000) and several minor bands for the apoprotein of very low density lipoprotein and one major (approximate molecular weight, 28,000) and several minor bands for that of high density lipoprotein.  相似文献   

20.
Differential density gradient ultracentrifugation procedures, utilizing a vertical rotor, were developed for the preparative purification of very high density lipoproteins (VHDL, density greater than 1.21 g/ml). The VHDLs of several insect species were purified as follows. An initial density gradient ultracentrifugation step removed lipoproteins of lower density from the VHDL-fraction, which partially separated from the nonlipoproteins present in the infranatant. A complete separation was achieved by a second centrifugation step employing a modified gradient system. The use of a vertical rotor and specially designed discontinuous gradients allows a relatively fast, efficient, and economical isolation of the class of very high density lipoproteins. Similar gradient systems should be useful for the detection and purification of VHDLs from other sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号