首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hitchens TK  Mannervik B  Rule GS 《Biochemistry》2001,40(39):11660-11669
Glutathione transferases comprise a large family of cellular detoxification enzymes that function by catalyzing the conjugation of glutathione (GSH) to electron-deficient centers on carcinogens and other toxins. NMR methods have been used to characterize the structure and dynamics of a human class pi enzyme, GST P1-1, in solution. Resonance assignments have been obtained for the unliganded enzyme and the GSH and S-hexylglutathione (GS-hexyl) complexes. Differences in chemical shifts between the GSH and GS-hexyl complexes suggest more extensive structural differences between these two enzyme-ligand complexes than detected by previous crystallographic methods. The NMR studies reported here clearly show that an alpha-helix (alpha2) within the GSH binding site exists in multiple conformations at physiological temperatures in the absence of ligand. A single conformation of alpha2 is induced by the presence of either GSH or GS-hexyl or a reduction in temperature to below 290 K. The large enthalpy of the transition ( approximately 150 kJ/mol) suggests a considerable structural rearrangement of the protein. The Gibbs free energy for the transition to the unfolded form is on the order of -4 to -6 kJ/mol at physiological temperatures (37 degrees C). This order-to-disorder transition contributes substantially to the overall thermodynamics of ligand binding and should be considered in the design of selective inhibitors of class pi glutathione transferases.  相似文献   

2.
Mosebi S  Sayed Y  Burke J  Dirr HW 《Biochemistry》2003,42(51):15326-15332
The C-terminal region in class alpha glutathione transferases (GSTs) modulates the catalytic and nonsubstrate ligand binding functions of these enzymes. Except for mouse GST A1-1 (mGST A1-1), the structures of class alpha GSTs have a bulky aliphatic side chain topologically equivalent to Ile219 in human GST A1-1 (hGST A1-1). In mGST A1-1, the corresponding residue is an alanine. To investigate the role of Ile219 in determining the conformational dynamics of the C-terminal region in hGST A1-1, the residue was replaced by alanine. The substitution had no effect on the global structure of hGST A1-1 but did reduce the conformational stability of the C-terminal region of the protein. This region could be stabilized by ligands bound at the active site. The catalytic behavior of hGST A1-1 was significantly compromised by the I219A mutation as demonstrated by reduced enzyme activity, increased K(m) for the substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB), and reduced catalytic efficiencies. Inhibition studies also indicated that the binding affinities for product and substrate analogues were dramatically decreased. The affinity of the mutant for GSH was, however, only slightly increased, indicating that the G-site was unaltered by the mutation. The binding affinity and stoichiometry for the anionic dye 8-anilino-1-naphthalene sulfonate (ANS) was also not significantly affected by the I219A mutation. However, the lower DeltaC(p) for ANS binding to the mutant (-0.34 kJ/mol per K compared with -0.84 kJ/mol per K for the wild-type protein) suggests that ANS binding to the mutant results in the burial of less hydrophobic surface area. Fluorescence data also indicates that ANS bound to the mutant is more prone to quenching by water. Overall, the data from this study, together with the structural details of the C-terminal region in mGST A1-1, show that Ile219 is an important structural determinant of the stability and dynamics of the C-terminal region of hGST A1-1.  相似文献   

3.
The C-terminal region in class Alpha glutathione transferase A1-1 (GSTA1-1), which forms an amphipathic alpha-helix (helix 9), is known to contribute to the catalytic and non-substrate ligand-binding functions of the enzyme. The region in the apo protein is proposed to be disordered which, upon ligand binding at the active-site, becomes structured and localised. Because Ile219 plays a pivotal role in the stability and localisation of the region, the role of tertiary interactions mediated by Ile219 in determining the conformation and dynamics of the C-terminal region were studied. Ligand-binding microcalorimetric and X-ray structural data were obtained to characterise ligand binding at the active-site and the associated localisation of the C-terminal region. In the crystal structure of the I219A hGSTA1-1.S-hexylglutathione complex, the C-terminal region of one chain is mobile and not observed (unresolved electron density), whereas the corresponding region of the other chain is localised and structured as a result of crystal packing interactions. In solution, the mutant C-terminal region of both chains in the complex is mobile and delocalised resulting in a hydrated, less hydrophobic active-site and a reduction in the affinity of the protein for S-hexylglutathione. Complete dehydration of the active-site, important for maintaining the highly reactive thiolate form of glutathione, requires the binding of ligands and the subsequent localisation of the C-terminal region. Thermodynamic data demonstrate that the mobile C-terminal region in apo hGSTA1-1 is structured and does not undergo ligand-induced folding. Its close proximity to the surface of the wild-type protein is indicated by the concurrence between the observed heat capacity change of complex formation and the type and amount of surface area that becomes buried at the ligand-protein interface when the C-terminal region in the apo protein assumes the same localised structure as that observed in the wild-type complex.  相似文献   

4.
Glutathione transferases are detoxification enzymes that catalyze the addition of glutathione (GSH) to a wide variety of hydrophobic compounds. Although this group of enzymes has been extensively characterized by crystallographic studies, little is known about their dynamic properties. This study investigates the role of protein dynamics in the mechanism of a human class mu enzyme (GSTM2-2) by characterizing the motional properties of the unliganded enzyme, the enzyme-substrate (GSH) complex, an enzyme-product complex [S-(2,4-dinitrobenzyl)glutathione, GSDNB], and an enzyme-inhibitor complex (S-1-hexylglutathione, GSHEX). The kinetic on- and off-rates for these ligands are 10-20-fold lower than the diffusion limit, suggesting dynamic conformational heterogeneity of the active site. The off-rate of GSDNB is similar to the turnover number for its enzymatic formation, suggesting that product release is rate-limiting when 1-chloro-2,4-dinitrobenzene is the substrate. The dynamic properties of GSTM2-2 were investigated over a wide range of time scales using (15)N nuclear spin relaxation, residual dipolar couplings, and amide hydrogen-deuterium exchange rates. These data show that the majority of the protein backbone is rigid on the nanosecond to picosecond time scale for all forms of the enzyme. The presence of motion on the millisecond to microsecond time scale was detected for a small number of residues within the active site. These motions are likely to play a role in facilitating substrate binding and product release. The residual dipolar couplings also show that the conformation of the active site region is more open in solution than in the crystalline environment, further enhancing ligand accessibility to the active site. Amide hydrogen-deuterium exchange rates indicate a reduction in the dynamic properties of several residues near the active site due to the binding of ligand. GSH binding reduces the exchange rate of a number of residues in proximity to its binding site, while GSHEX causes a reduction in amide-exchange rates throughout the entire active site region. The location of the dinitrobenzene (DNB) ring in the GSDNB-GSTM2-2 complex was modeled using chemical shift changes that occur when GSDNB binds to the enzyme. The DNB ring makes a number of contacts with hydrophobic residues in the active site, including Met108. Replacement of Met108 with Ala increases the turnover number of the enzyme by a factor of 1.7.  相似文献   

5.
Glutathione transferases (GSTs) are enzymes that contribute to cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of xenobiotic compounds, including several chemotherapeutic drugs. In the present work we investigated the interaction of the chemotherapeutic drug chlorambucil (CBL) with human GSTA1-1 (hGSTA1-1) using kinetic analysis, protein crystallography and molecular dynamics. In the presence of GSH, CBL behaves as an efficient substrate for hGSTA1-1. The rate-limiting step of the catalytic reaction between CBL and GSH is viscosity-dependent and kinetic data suggest that product release is rate-limiting. The crystal structure of the hGSTA1-1/CBL-GSH complex was solved at 2.1 Å resolution by molecular replacement. CBL is bound at the H-site attached to the thiol group of GSH, is partially ordered and exposed to the solvent, making specific interactions with the enzyme. Molecular dynamics simulations based on the crystal structure indicated high mobility of the CBL moiety and stabilization of the C-terminal helix due to the presence of the adduct. In the absence of GSH, CBL is shown to be an alkylating irreversible inhibitor for hGSTA1-1. Inactivation of the enzyme by CBL followed a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of CBL per mol of dimeric enzyme being incorporated. Structural analysis suggested that the modifying residue is Cys112 which is located at the entrance of the H-site. The results are indicative of a structural communication between the subunits on the basis of mutually exclusive modification of Cys112, indicating that the two enzyme active sites are presumably coordinated.  相似文献   

6.
Fe65L1, a member of the Fe65 family, is an adaptor protein that interacts with the cytoplasmic domain of Alzheimer amyloid precursor protein (APP) through its C-terminal phosphotyrosine interaction/phosphotyrosine binding (PID/PTB) domain. In the present study, the solution structures of the C-terminal PID domain of mouse Fe65L1, alone and in complex with a 32-mer peptide (DAAVTPEERHLSKMQQNGYENPTYKFFEQMQN) derived from the cytoplasmic domain of APP, were determined using NMR spectroscopy. The C-terminal PID domain of Fe65L1 alone exhibits a canonical PID/PTB fold, whereas the complex structure reveals a novel mode of peptide binding. In the complex structure, the NPTY motif forms a type-I beta-turn, and the residues immediately N-terminal to the NPTY motif form an antiparallel beta-sheet with the beta5 strand of the PID domain, the binding mode typically observed in the PID/PTB.peptide complex. On the other hand, the N-terminal region of the peptide forms a 2.5-turn alpha-helix and interacts extensively with the C-terminal alpha-helix and the peripheral regions of the PID domain, representing a novel mode of peptide binding that has not been reported previously for the PID/PTB.peptide complex. The indispensability of the N-terminal region of the peptide for the high affinity of the PID-peptide interaction is consistent with NMR titration and isothermal calorimetry data. The extensive binding features of the PID domain of Fe65L1 with the cytoplasmic domain of APP provide a framework for further understanding of the function, trafficking, and processing of APP modulated by adapter proteins.  相似文献   

7.
Leech carboxypeptidase inhibitor (LCI) is a novel protein inhibitor present in the medicinal leech Hirudo medicinalis. The structures of LCI free and bound to carboxypeptidase A2 (CPA2)have been determined by NMR and X-ray crystallography, respectively. The LCI structure defines a new protein motif that comprises a five-stranded antiparallel beta-sheet and one short alpha-helix. This structure is preserved in the complex with human CPA2 in the X-ray structure, where the contact regions between the inhibitor and the protease are defined. The C-terminal tail of LCI becomes rigid upon binding the protease as shown in the NMR relaxation studies, and it interacts with the carboxypeptidase in a substrate-like manner. The homology between the C-terminal tails of LCI and the potato carboxypeptidase inhibitor represents a striking example of convergent evolution dictated by the target protease. These new structures are of biotechnological interest since they could elucidate the control mechanism of metallo-carboxypeptidases and could be used as lead compounds for the search of fibrinolytic drugs.  相似文献   

8.
Complete sequence-specific assignments of the 1H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel beta-pleated sheet consisting of four strands, A, B, C, D, a segment SAB consisting of an extended region around the active-center histidine (His-15) and an alpha-helix, a half-turn between strands B and C, a segment SCD which shows no typical secondary structure, and the alpha-helical, C-terminal segment S(term). These general structural features are similar to those found earlier in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.  相似文献   

9.
The NMR solution structure of the PinA WW domain from Aspergillus nidulans is presented. The backbone of the PinA WW domain is composed of a triple-stranded anti-parallel beta-sheet and an alpha-helix similar to Ess1 and Pin1 without the alpha-helix linker. Large RMS deviations in Loop I were observed both from the NMR structures and molecular dynamics simulation suggest that the Loop I of PinA WW domain is flexible and solvent accessible, thus enabling it to bind the pS/pT-P motif. The WW domain in this structure are stabilised by a hydrophobic core. It is shown that the linker flexibility of PinA is restricted because of an alpha-helical structure in the linker region. The combination of NMR structural data and detailed Molecular Dynamics simulations enables a comprehensive structural and dynamic understanding of this protein.  相似文献   

10.
Two-dimensional nuclear magnetic resonance (NMR) spectroscopy in combination with distance geometry (DG) and dynamical simulated annealing (DSA) calculations have been used to determine the tertiary solution structure of a synthetic 29-residue fragment of von Willebrand factor (vWF). This fragment (D514-E542) represents an adhesion site on vWF for its platelet receptor, the glycoprotein Ib-IX complex (GP Ib-IX). The NMR data yielded 109 interproton distance measurements and two chi 1 dihedral angle constraints for use in DG and DSA calculations. Most prominent in the calculated family of solution structures was an amphipathic, right-handed alpha-helix in the C-terminal segment of the peptide. We propose that this highly structured region may be important for the specific molecular interaction of vWF with the GP Ib-IX complex.  相似文献   

11.
A peptide corresponding to the BH3 region of the proapoptotic protein, BID, could be bound in the cleft of the antiapoptotic protein, BCL-w. This binding induced major conformational rearrangements in both the peptide and protein components of the complex and led to the displacement and unfolding of the BCL-w C-terminal alpha-helix. The structure of BCL-w with a bound BID-BH3 peptide was determined using NMR spectroscopy and molecular docking. These studies confirmed that a region of 16 residues of the BID-BH3 peptide is responsible for its strong binding to BCL-w and BCL-x(L). The interactions of BCL-w and the BID-BH3 peptide complex with dodecylphosphocholine micelles were characterized and showed that the conformational change of BCL-w upon lipid binding occurred at the same time as the release and unfolding of the BH3 peptide.  相似文献   

12.
The structures of des 1-6 bovine neurophysin-II in the unliganded state and as its complex with lysine vasopressin were determined crystallographically at resolutions of 2.4 A and 2.3 A, respectively. The structure of the protein component of the vasopressin complex was, with some local differences, similar to that determined earlier of the full-length protein complexed with oxytocin, but relatively large differences, probably intrinsic to the hormones, were observed between the structures of bound oxytocin and bound vasopressin at Gln 4. The structure of the unliganded protein is the first structure of an unliganded neurophysin. Comparison with the liganded state indicated significant binding-induced conformational changes that were the largest in the loop region comprising residues 50-58 and in the 7-10 region. A subtle binding-induced tightening of the subunit interface of the dimer also was shown, consistent with a role for interface changes in neurophysin allosteric mechanism, but one that is probably not predominant. Interface changes are suggested to be communicated from the binding site through the strands of beta-sheet that connect these two regions, in part with mediation by Gly 23. Comparison of unliganded and liganded states additionally reveals that the binding site for the hormone alpha-amino group is largely preformed and accessible in the unliganded state, suggesting that it represents the initial site of hormone protein recognition. The potential molecular basis for its thermodynamic contribution to binding is discussed.  相似文献   

13.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a monotopic membrane protein anchored to the membrane by an N-terminal in-plane amphipathic alpha-helix. This membrane anchor is essential for the assembly of a functional viral replication complex. Although amino acid sequences differ considerably, putative membrane anchors with amphipathic features were predicted in NS5A from related Flaviviridae family members, in particular bovine viral diarrhea virus (BVDV), the prototype representative of the genus Pestivirus. We report here the NMR structure of the membrane anchor 1-28 of NS5A from BVDV in the presence of different membrane mimetic media. This anchor includes a long amphipathic alpha-helix of 21 residues interacting in-plane with the membrane interface and including a putative flexible region. Molecular dynamic simulation at a water-dodecane interface used to mimic the surface separating a lipid bilayer and an aqueous medium demonstrated the stability of the helix orientation and the location at the hydrophobic-hydrophilic interface. The flexible region of the helix appears to be required to allow the most favorable interaction of hydrophobic and hydrophilic side chain residues with their respective environment at the membrane interface. Despite the lack of amino acid sequence similarity, this amphipathic helix shares common structural features with that of the HCV counterpart, including a stable, hydrophobic N-terminal segment separated from the more hydrophilic C-terminal segment by a local, flexible region. These structural conservations point toward conserved roles of the N-terminal in-plane membrane anchors of NS5A in replication complex formation of HCV, BVDV, and other related viruses.  相似文献   

14.
The interaction between the leukocyte function-associated antigen-1 (LFA-1) and the intercellular adhesion molecule is thought to be mediated primarily via the inserted domain (I-domain) in the alpha-subunit. The activation of LFA-1 is an early step in triggering the adhesion of leukocytes to target cells decorated with intercellular adhesion molecules. There is some disagreement in the literature over the respective roles of conformational changes in the I-domain and of divalent cations (Mg(2+), Mn(2+)) in the activation of LFA-1 for intercellular adhesion molecule binding. X-ray crystallographic structures of the I-domains of LFA-1 and Mac-1 in the presence and absence of cations show structural differences in the C-terminal alpha-helix; this change was proposed to represent the active and inactive conformations of the I-domain. However, more recent X-ray results have called this proposal into question. The solution structure of the Mg(2+) complex of the I-domain of LFA-1 has been determined by NMR methods, using a model-based approach to nuclear Overhauser enhancement spectroscopy peak assignment. The protein adopts the same structure in solution as that of the published I-domain X-ray structures, but the C-terminal region, where the X-ray structures are most different from each other, is different again in the solution structures. The secondary structure of this helix is well formed, but NMR relaxation data indicate that there is considerable flexibility present, probably consisting of breathing or segmental motion of the helix. The conformational diversity seen in the various X-ray structures could be explained as a result of the inherent flexibility of this C-terminal region and as a result of crystal contacts. Our NMR data are consistent with a model where the C-terminal helix has the potential flexibility to take up alternative conformations, for example, in the presence and absence of the intercellular adhesion molecule ligand. The role of divalent cations appears from our results not to be as a direct mediator of a conformational change that alters affinity for the ligand. Rather, the presence of the cation appears to be involved in some other way in ligand binding, perhaps by acting as a bridge to the ligand and by modulation of the charge of the binding surface.  相似文献   

15.
The class kappa glutathione (GSH) transferase is an enzyme that resides in the mitochondrial matrix. Its relationship to members of the canonical GSH transferase superfamily has remained an enigma. The three-dimensional structure of the class kappa enzyme from rat (rGSTK1-1) in complex with GSH has been solved by single isomorphous replacement with anomalous scattering at a resolution of 2.5 A. The structure reveals that the enzyme is more closely related to the protein disulfide bond isomerase, dsbA, from Escherichia coli than it is to members of the canonical superfamily. The structures of rGSTK1-1 and the canonical superfamily members indicate that the proteins folds have diverged from a common thioredoxin/glutaredoxin progenitor but did so by different mechanisms. The mitochondrial enzyme, therefore, represents a fourth protein superfamily that supports GSH transferase activity. The thioredoxin domain functions in a manner that is similar to that seen in the canonical enzymes by providing key structural elements for the recognition of GSH. The hydroxyl group of S16 is within hydrogen-bonding distance of the sulfur of bound GSH and is, in part, responsible for the ionization of the thiol in the E*GSH complex (pKa = 6.4 +/- 0.1). Preequilibrium kinetic experiments indicate that the k(on) for GSH is 1 x 10(5) M(-1) s(-1) and k(off) for GS- is approximately 8 s(-1) and relatively slow with respect to turnover with 1-chloro-2, 4-dinitrobenzene (CDNB). As a result, the KM(GSH) (11 mM) is much larger than the apparent Kd(GSH) (90 microM). The active site has a relatively open access channel that is flanked by disordered loops that may explain the relatively high turnover number (280 s(-1) at pH 7.0) toward CDNB. The disordered loops form an extensive contiguous patch on one face of the dimeric enzyme, a fact that suggests that the protein surface may interact with a membrane or other protein partner.  相似文献   

16.
tmrB is the gene responsible for tunicamycin resistance in Bacillus subtilis. It is predicted that an increase in tmrB gene expression makes B. subtilis tunicamycin resistant. To examine the tmrB gene product, we produced the tmrB gene product in Escherichia coli by using the tac promoter. TmrB protein was found not only in the cytoplasm fraction but also in the membrane fraction. Although TmrB protein is entirely hydrophilic and has no hydrophobic stretch of amino acids sufficient to span the membrane, its C-terminal 18 amino acids could form an amphiphilic alpha-helix. Breaking this potential alpha-helix by introducing proline residues or a stop codon into this region caused the release of this membrane-bound protein into the cytoplasmic fraction, indicating that the C-terminal 18 residues were essential for membrane binding. On the other hand, TmrB protein has an ATP-binding consensus sequence in the N-terminal region. We have tested whether this sequence actually has the ability to bind ATP by photoaffinity cross-linking with azido-[alpha-32P]ATP. Wild-type protein bound azido-ATP well, but mutants with substitutions in the consensus amino acids were unable to bind azido-ATP. These C-terminal or N-terminal mutant genes were unable to confer tunicamycin resistance on B. subtilis in a multicopy state. It is concluded that TmrB protein is a novel ATP-binding protein which is anchored to the membrane with its C-terminal amphiphilic alpha-helix.  相似文献   

17.
PDZ domains are widespread protein modules that commonly recognize C-terminal sequences of target proteins and help to organize macromolecular signaling complexes. These sequences usually bind in an extended conformation to relatively shallow grooves formed between a beta-strand and an alpha-helix in the corresponding PDZ domains. Because of this binding mode, many PDZ domains recognize primarily the C-terminal and the antepenultimate side-chains of the target protein, which commonly conform to motifs that have been categorized into different classes. However, an increasing number of PDZ domains have been found to exhibit unusual specificities. These include the PDZ domain of RIMs, which are large multidomain proteins that regulate neurotransmitter release and help to organize presynaptic active zones. The RIM PDZ domain binds to the C-terminal sequence of ELKS with a unique specificity that involves each of the four ELKS C-terminal residues. To elucidate the structural basis for this specificity, we have determined the 3D structure in solution of an RIM/ELKS C-terminal peptide complex using NMR spectroscopy. The structure shows that the RIM PDZ domain contains an unusually deep and narrow peptide-binding groove with an exquisite shape complementarity to the four ELKS C-terminal residues in their bound conformation. This groove is formed, in part, by a set of side-chains that is conserved selectively in RIM PDZ domains and that hence determines, at least in part, their unique specificity.  相似文献   

18.
19.
The structure of TPK1delta, a truncated variant of the cAMP-dependent protein kinase catalytic subunit from Saccharomyces cerevisiae, was determined in an unliganded state at 2.8 A resolution and refined to a crystallographic R-factor of 19.4%. Comparison of this structure to that of its fully liganded mammalian homolog revealed a highly conserved protein fold comprised of two globular lobes. Within each lobe, root mean square deviations in Calpha positions averaged approximately equals 0.9 A. In addition, a phosphothreonine residue was found in the C-terminal domain of each enzyme. Further comparison of the two structures suggests that a trio of conformational changes accompanies ligand-binding. The first consists of a 14.7 degrees rigid-body rotation of one lobe relative to the other and results in closure of the active site cleft. The second affects only the glycine-rich nucleotide binding loop, which moves approximately equals 3 A to further close the active site and traps the nucleotide substrate. The third is localized to a C-terminal segment that makes direct contact with ligands and the ligand-binding cleft. In addition to resolving the conformation of unliganded enzyme, the model shows that the salient features of the cAMP-dependent protein kinase are conserved over long evolutionary distances.  相似文献   

20.
Besides their classical role in alimentary protein degradation, zinc-dependant carboxypeptidases also participate in more selective regulatory processes like prohormone and neuropeptide processing or fibrinolysis inhibition in blood plasma. Human pancreatic procarboxypeptidase B (PCPB) is the prototype for those human exopeptidases that cleave off basic C-terminal residues and are secreted as inactive zymogens. One such protein is thrombin-activatable fibrinolysis inhibitor (TAFI), also known as plasma PCPB, which circulates in human plasma as a zymogen bound to plasminogen. The structure of human pancreatic PCPB displays a 95-residue pro-segment consisting of a globular region with an open-sandwich antiparallel-alpha antiparallel-beta topology and a C-terminal alpha-helix, which connects to the enzyme moiety. The latter is a 309-amino acid residue catalytic domain with alpha/beta hydrolase topology and a preformed active site, which is shielded by the globular domain of the pro-segment. The fold of the proenzyme is similar to previously reported procarboxypeptidase structures, also in that the most variable region is the connecting segment that links both globular moieties. However, the empty active site of human procarboxypeptidase B has two alternate conformations in one of the zinc-binding residues, which account for subtle differences in some of the key residues for substrate binding. The reported crystal structure, refined with data to 1.6A resolution, permits in the absence of an experimental structure, accurate homology modelling of TAFI, which may help to explain its properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号