首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A common single nucleotide polymorphism in the factor H gene predisposes to age-related macular degeneration. Factor H blocks the alternative pathway of complement on self-surfaces bearing specific polyanions, including the glycosaminoglycan chains of proteoglycans. Factor H also binds C-reactive protein, potentially contributing to noninflammatory apoptotic processes. The at risk sequence contains His (rather than Tyr) at position 402 (384 in the mature protein), in the seventh of the 20 complement control protein (CCP) modules (CCP7) of factor H. We expressed both His(402) and Tyr(402) variants of CCP7, CCP7,8, and CCP6-8. We determined structures of His(402) and Tyr(402) CCP7 and showed them to be nearly identical. The side chains of His/Tyr(402) have similar, solvent-exposed orientations far from interfaces with CCP6 and -8. Tyr(402) CCP7 bound significantly more tightly than His(402) CCP7 to a heparin affinity column as well as to defined-length sulfated heparin oligosaccharides employed in gel mobility shift assays. This observation is consistent with the position of the 402 side chain on the edge of one of two glycosaminoglycan-binding surface patches on CCP7 that we inferred on the basis of chemical shift perturbation studies with a sulfated heparin tetrasaccharide. According to surface plasmon resonance measurements, Tyr(402) CCP6-8 binds significantly more tightly than His(402) CCP6-8 to immobilized C-reactive protein. The data support a causal link between H402Y and age-related macular degeneration in which variation at position 402 modulates the response of factor H to age-related changes in the glycosaminoglycan composition and apoptotic activity of the macula.  相似文献   

2.
Factor H (FH) regulates the activation of C3b in the alternative complement pathway, both in serum and at host cell surfaces. It is composed of 20 short complement regulator (SCR) domains. The Y402H polymorphism in FH is a risk factor for age-related macular degeneration. C-reactive protein (CRP) is an acute phase protein that binds Ca2+. We established the FH-CRP interaction using improved analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and synchrotron x-ray scattering methods. Physiological FH and CRP concentrations were used in 137 mm NaCl and 2 mm Ca2+, in which the occurrence of denatured CRP was avoided. In solution, AUC revealed FH-CRP binding. The FH-CRP interaction inhibited the formation of higher FH oligomers, indicating that CRP blocked FH dimerization sites at both SCR-6/8 and SCR-16/20. SPR confirmed the FH-CRP interaction and its NaCl concentration dependence upon using either immobilized FH or CRP. The SCR-1/5 fragment of FH did not bind to CRP. In order of increasing affinity, SCR-16/20, SCR-6/8 (His-402), and SCR-6/8 (Tyr-402) fragments bound to CRP. X-ray scattering showed that FH became more compact when binding to CRP, which is consistent with CRP binding at two different FH sites. We concluded that FH and CRP bind at elevated acute phase concentrations of CRP in physiological buffer. The SCR-16/20 site is novel and indicates the importance of the FH-CRP interaction for both age-related macular degeneration and atypical hemolytic uremic syndrome.  相似文献   

3.
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.  相似文献   

4.
Complement factor H (FH) is an important regulator of the alternative complement pathway. The Y402H polymorphism within the seventh short consensus repeat of FH was recently shown to be associated with age-related macular degeneration, the most common cause of irreversible blindness in the Western world. We examined the effects of this polymorphism on various FH functions. FH purified from sera of age-related macular degeneration patients homozygous for the FH(402H) variant showed a significantly reduced binding to C-reactive protein (CRP), an acute phase protein, as compared with FH derived from unaffected controls homozygous for the FH(402Y) variant. Strongly reduced binding to CRP was also observed with a recombinant fragment of FH (short consensus repeat 5-7) containing the same amino acid change. Because the interaction of CRP and FH promotes complement-mediated clearance of cellular debris in a noninflammatory fashion, we propose that the reduced binding of FH(402H) to CRP could lead to an impaired targeting of FH to cellular debris and a reduction in debris clearance and enhanced inflammation along the macular retinal pigmented epithelium-choroid interface in individuals with age-related macular degeneration.  相似文献   

5.
Factor H (FH) is a major complement control protein in serum. The seventh short complement regulator (SCR-7) domain of the 20 in FH is associated with age-related macular degeneration through a Tyr402His polymorphism. The recombinant SCR-6/8 domains containing either His402 or Tyr402 and their complexes with a heparin decasaccharide were studied by analytical ultracentrifugation and X-ray scattering. The sedimentation coefficient is concentration dependent, giving a value of 2.0 S at zero concentration and a frictional ratio f/f(o) of 1.2 for both allotypes. The His402 allotype showed a slightly greater self-association than the Tyr402 allotype, and small amounts of dimeric SCR-6/8 were found for both allotypes in 50 mM, 137 mM and 250 mM NaCl buffers. Sedimentation equilibrium data were interpreted in terms of a monomer-dimer equilibrium with a dissociation constant of 40 microM for the His402 form. The Guinier radius of gyration R(G) of 3.1-3.3 nm and the R(G)/R(O) ratio of 2.0-2.1 showed that SCR-6/8 is relatively extended in solution. The distance distribution function P(r) showed a maximum dimension of 10 nm, which is less than the length expected for a linear domain arrangement. The constrained scattering and sedimentation modelling of FH SCR-6/8 showed that bent SCR arrangements fit the data better than linear arrangements. Previously identified heparin-binding residues were exposed on the outside curvature of this bent domain structure. Heparin caused the formation of a more linear structure, possibly by binding to residues in the linker. It was concluded that the His402 allotype may self-associate more readily than the Tyr402 allotype, SCR-6/8 is partly responsible for the folded-back structure of intact FH, and SCR-6/8 changes conformation upon heparin binding.  相似文献   

6.
A polymorphism in complement factor H has recently been associated with age-related macular degeneration (AMD), the leading cause of blindness in the elderly. A histidine rather than a tyrosine at residue position 384 in the mature protein increases the risk of AMD. Here, using a recombinant construct, we show that amino acid 384 is adjacent to a heparin-binding site in CCP7 of factor H and demonstrate that the allotypic variants differentially recognize heparin. This functional alteration may affect binding of factor H to polyanionic patterns on host surfaces, potentially influencing complement activation, immune complex clearance, and inflammation in the macula of AMD patients.  相似文献   

7.
Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.  相似文献   

8.
The main virulence factor of group A streptococcus (GAS), M protein, binds plasma complement regulators factor H (FH) and FH-like protein 1 (FHL-1) leading to decreased opsonization. The M protein binding site on FH is within domain 7 in which also the age-related macular degeneration (AMD)-associated polymorphism Y402H is located. We studied if FH allotypes 402H and 402Y have different binding affinities to GAS. Plasma-derived FH allotype 402H and its recombinant fragment FH5-7(402H) showed decreased binding to several GAS strains. Growth of GAS in human blood taken from FH(402H) homozygous individuals was decreased when compared with blood taken from FH(402Y) homozygous individuals. The effect of the allotype 402H can be explained by combining the previous M protein mutagenesis data and the recently published crystal structure of FH6-8. In conclusion the data indicate that the AMD-associated allotype 402H leads to diminished binding of FH to GAS and increased opsonophagocytosis of the bacteria in blood. These results suggest that the homozygous presence of the allele 402H could be associated with decreased risk for severe GAS infections offering an explanation for the high frequency of the allele despite its association with visual impairment.  相似文献   

9.
Binding of the complement regulatory protein, factor H, to C-reactive protein has been reported and implicated as the biological basis for association of the H402 polymorphic variant of factor H with macular degeneration. Published studies utilize solid-phase or fluid-phase binding assays to show that the factor H Y402 variant binds C-reactive protein more strongly than H402. Diminished binding of H402 variant to C-reactive protein in retinal drusen is posited to permit increased complement activation, driving inflammation and pathology. We used well validated native human C-reactive protein and pure factor H Y402H variants to test interactions. When factor H variants were incubated with C-reactive protein in the fluid phase at physiological concentrations, no association occurred. When C-reactive protein was immobilized on plastic, either non-specifically by adsorption in the presence of Ca(2+) to maintain its native fold and pentameric subunit assembly or by specific Ca(2+)-dependent binding to immobilized natural ligands, no specific binding of either factor H variant from the fluid phase was observed. In contrast, both factor H variants reproducibly bound to C-reactive protein immobilized in the absence of Ca(2+), conditions that destabilize the native fold and pentameric assembly. Both factor H variants strongly bound C-reactive protein that was denatured by heat treatment before immobilization, confirming interaction with denatured but not native C-reactive protein. We conclude that the reported binding of factor H to C-reactive protein results from denaturation of the C-reactive protein during immobilization. Differential binding to C-reactive protein, thus, does not explain association of the Y402H polymorphism with macular degeneration.  相似文献   

10.
Age-related macular degeneration is a leading form of blindness in Western countries and is associated with a common SNP (rs 1061170/Y402H) in the Factor H gene, which encodes the two complement inhibitors Factor H and FHL1. However, the functional consequences of this Tyr(402) His exchange in domain 7 are not precisely defined. In this study, we show that the Tyr(402) His sequence variation affects Factor H surface recruitment by monomeric C-reactive protein (mCRP) to specific patches on the surface of necrotic retinal pigment epithelial cells. Enhanced attachment of the protective Tyr(402) variants of both Factor H and FHL1 by mCRP results in more efficient complement control and further provides an anti-inflammatory environment. In addition, we demonstrate that mCRP is generated on the surface of necrotic retinal pigment epithelial cells and that this newly formed mCRP colocalizes with the cell damage marker annexin V. Bound to the cell surface, Factor H-mCRP complexes allow complement inactivation and reduce the release of the proinflammatory cytokine TNF-α. This mCRP-mediated complement inhibitory and anti-inflammatory activity at necrotic membrane lesions is affected by residue 402 of Factor H and defines a new role for mCRP, for Factor H, and also for the mCRP-Factor H complex. The increased protective capacity of the Tyr(402) Factor H variant allows better and more efficient clearance and removal of cellular debris and reduces inflammation and pathology.  相似文献   

11.
Factor H (FH) is a major regulator of complement alternative pathway activation. It is composed of 20 short complement regulator (SCR) domains and is genetically associated as a risk factor for age-related macular degeneration. Previous studies on FH suggested that it existed in monomeric and dimeric forms. Improved X-ray scattering and analytical ultracentrifugation methodology for wild-type FH permitted a clarification of these oligomeric properties. Data at lower concentrations revealed a dependence of the X-ray radius of gyration values on concentration that corresponded to the weak self-association of FH. Global sedimentation equilibrium fits indicated that a monomer-dimer equilibrium best described the data up to 1.3 mg/ml with a fitted dissociation constant KD of 28 μM and that higher oligomers formed at increased concentrations. The KD showed that about 85-95% of serum FH will be monomeric in the absence of other factors. Size-distribution analyses in sedimentation velocity experiments showed that monomeric FH was the major species but that as many as six oligomeric forms co-existed with it. The data were explained in terms of two weak dimerisation sites recently identified in the SCR-6/8 and SCR-16/20 fragments of FH with similar KD values. These observations indicate a mechanism for the progressive self-association of FH and may be relevant for complement regulation and the formation of drusen deposits that are associated with age-related macular degeneration.  相似文献   

12.
Age-related macular degeneration (AMD) is a multifactorial disease that is strongly associated with the Tyr402His variant in the complement factor H (CFH) gene. Drusen are hallmark lesions of AMD and consist of focal-inflammatory and/or immune-mediated depositions of extracellular material at the interface of the retinal pigment epithelium (RPE) and the Bruch membrane. We evaluated the role of CFH in 30 probands with early-onset drusen and identified heterozygous nonsense, missense, and splice variants in five families. The affected individuals all carried the Tyr402His AMD risk variant on the other allele. This supports an autosomal-recessive disease model in which individuals who carry a CFH mutation on one allele and the Tyr402His variant on the other allele develop drusen. Our findings strongly suggest that monogenic inheritance of CFH variants can result in basal laminar drusen in young adults, and this can progress to maculopathy and severe vision loss later in life.  相似文献   

13.
Cytochrome b558 in the cytoplasmic membrane of Bacillus subtilis constitutes the anchor and electron acceptor to the flavoprotein (Fp) and iron-sulphur protein (Ip) in succinate:quinone oxidoreductase, and seemingly contains two haem groups. EPR and MCD spectroscopic data indicate bis-imidazole ligation of the haem. Apo-cytochrome was found in the membrane fraction of haem-deficient B. subtilis, suggesting that during biogenesis of the oxidoreductase the cytochrome b558 polypeptide is embedded into the membrane prior to the incorporation of haem and subsequent binding of Fp and Ip. The six His residues in cytochrome b558 were individually changed to Tyr to attempt identification of residues serving as haem axial ligands and to analyse the role of His residues for assembly and function of the oxidoreductase. From the properties of the mutants, His-47 can be excluded as a haem ligand. The remaining His residues (at positions 13, 28, 70, 113 and 155) are located in or close to four predicted transmembrane segments. The Tyr-28 and Tyr-70 mutant proteins appeared to lack one of the two haems. Only the Tyr-13 and Tyr-47 mutant cytochromes were found to function as anchors for Fp and Ip, but the Tyr-13 mutant cytochrome assembles into an enzymatically defective succinate:quinone oxidoreductase. It is concluded from a combination of the experimental findings, sequence comparisons and membrane topology data that His-28, His-70 and His-155 are probably haem axial ligands in a dihaem cytochrome b558. His-70 and His-155 may be ligands to the same haem.  相似文献   

14.
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ~12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease.  相似文献   

15.
Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an approximately 105-A-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 degrees C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface.  相似文献   

16.
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.  相似文献   

17.
Polymorphisms in factor H (FH), a major regulator of complement activation, and the accumulation of high zinc concentrations in the outer retina are both associated with age-related macular degeneration. FH is inhibited by zinc, which causes FH to aggregate. To investigate this, we quantitatively studied zinc-induced FH self-association by X-ray scattering and analytical ultracentrifugation to demonstrate uncontrolled FH oligomerisation in conditions corresponding to physiological levels of FH and pathological levels of zinc in the outer retina. By scattering, FH at 2.8-7.0 μM was unaffected until [Zn] increased to 20 μM, whereupon the radius of gyration, RG, values increased from 9 to 15 nm at [Zn] = 200 μM. The maximum dimension of FH increased from 32 to 50 nm, indicating that compact oligomers had formed. By ultracentrifugation, size-distribution analyses showed that monomeric FH at 5.57 S was the major species at [Zn] up to 60 μM. At [Zn] above 60 μM, a series of large oligomers were formed, ranging up to 100 S in size. Oligomerisation was reversed by ethylenediaminetetraacetic acid. Structurally distinct large oligomers were observed for Cu, while Ni, Cd and Fe showed low amounts of oligomers and Mg and Ca showed no change. Fluid-phase assays showed reduced FH activities that correlated with increased oligomer formation. The results were attributed to different degrees of stabilisation of weak self-dimerisation sites in FH by transition metals. The relevance of metal-induced FH oligomer formation to complement regulation and age-related macular degeneration is discussed.  相似文献   

18.
Human complement factor H (FH), an abundant 155-kDa plasma glycoprotein with 40 disulphide bonds, regulates the alternative-pathway complement cascade. Mutations and single nucleotide polymorphisms in the FH gene predispose to development of age-related macular degeneration, atypical haemolytic uraemic syndrome and dense deposit disease. Supplementation with FH variants protective against disease is an enticing therapeutic prospect. Current sources of therapeutic FH are restricted to human blood plasma highlighting a need for recombinant material. Previously FH expression in cultured plant, mammalian or insect cells yielded protein amounts inadequate for full characterisation, and orders of magnitude below therapeutic usefulness. Here, the V62,Y402 variant of FH has been produced recombinantly (rFH) in Pichia pastoris cells. Codon-optimisation proved essential whilst exploitation of the yeast mating α-factor peptide ensured secretion. We thereby produced multiple 10s-of-milligram of rFH. Following endoglycosidase H digestion of N-linked glycans, rFH (with eight residual N-acetylglucosamine moieties) was purified on heparin-affinity resin and anion-exchange chromatography. Full-length rFH was verified by mass spectrometry and Western blot using monoclonal antibodies to the C-terminus. Recombinant FH is a single non-aggregated species (by dynamic light scattering) and fully functional in biochemical and biological assays. An additional version of rFH was produced in which eight N-glycosylation sequons were ablated by Asn-Gln substitutions resulting in a glycan-devoid product. Successful production of rFH in this potentially very highly expressing system makes production of therapeutically useful quantities economically viable. Furthermore, ease of genetic manipulation in P. pastoris would allow production of engineered FH versions with enhanced pharmacokinetic and pharmacodynamic properties.  相似文献   

19.
Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19–20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19–20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19–20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19–20 binding to mGEnCs. Compared with wild type FH19–20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19–20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19–20 mutants.  相似文献   

20.
C-reactive protein (CRP) is a major acute phase protein whose functions are not totally clear. In this study, we examined the interaction of CRP with factor H (FH), a key regulator of the alternative pathway (AP) of complement. Using the surface plasmon resonance technique and a panel of recombinantly expressed FH constructs, we observed that CRP binds to two closely located regions on short consensus repeat (SCR) domains 7 and 8-11 of FH. Also FH-like protein 1 (FHL-1), an alternatively spliced product of the FH gene, bound to CRP with its most C-terminal domain (SCR 7). The binding reactions were calcium-dependent and partially inhibited by heparin. In accordance with the finding that CRP binding sites on FH were distinct from the C3b binding sites, CRP preserved the ability of FH to promote factor I-mediated cleavage of C3b. We propose that the function of CRP is to target functionally active FH and FHL-1 to injured self tissues. Thereby, CRP could restrict excessive complement attack in tissues while allowing a temporarily enhanced AP activity against invading microbes in blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号