首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate–putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, l -DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.  相似文献   

2.
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to rhesus monkeys (1.0-2.5 mg/kg i.v.) produces irreversible damage to nigrostriatal neurons. Dopaminergic neurons in the dorsolateral part of striatum were the most vulnerable. The major clinical signs of an extrapyramidal syndrome, but not resting tremor, appeared only in MPTP-treated monkeys suffering from more than 80% reduction in striatal dopamine. No chronic changes in the mesolimbic dopaminergic system were observed. Immunocytochemical staining of the mid-brain with a tyrosine hydroxylase antiserum indicated that MPTP produced a significant decrease of dopaminergic cell bodies in the A9, but not in the A10 ventrotegmental area. Despite greater than 80% decrease in A9 nigral cell bodies, the dopamine content decreased only by 50%. Sprouting of the surviving nigral A9 neurons was observed histologically and neurochemically in the area above substantia nigra. The present behavioral, neurochemical and histological results indicate that MPTP produces an ideal primate model for studying parkinsonism. Selective lesion of more than 80% of the nigrostrial neurons by MPTP is sufficient to produce the major clinical signs of the extrapyramidal syndrome in idiopathic parkinsonism.  相似文献   

3.
Progressive degeneration and intraneuronal Lewy bodies made of filamentous α-synuclein (α-syn) in dopaminergic cells of the nigrostriatal system are characteristics of Parkinson's disease (PD). Glucose uptake is reduced in some of the brain regions affected by PD neurodegenerative changes. Defects in mitochondrial activity in the substantia nigra have been observed in the brain of patients affected by PD and substantia nigra lesions can induce the onset of a secondary parkinsonism. Thus, energy starvation and consequently metabolic impairment to dopaminergic neurons may be related to the onset of PD. On this line, we evaluated the effect of nutrient starvation, reproduced ' in vitro ' by glucose deprivation (GD), in primary mesecephalic neuronal cultures and dopaminergic-differentiated SH-SY5Y cells, to evaluate if decreased glucose support to dopaminergic cells can lead to mitochondrial damage, neurodegeneration and α-syn misfolding. Furthermore, we investigated the effect of dopamine (DA) treatment in the presence of a DA-uptake inhibitor or of the D2/D3 receptor (D2R/D3R) agonist quinpirole on GD-treated cells, to evaluate the efficacy of these therapeutic compounds. We found that GD induced the formation of fibrillary aggregated α-syn inclusions containing the DA transporter in dopaminergic cells. These alterations were accompanied by dopaminergic cell death and were exacerbated by DA overload. Conversely, the block of DA uptake and D2R/D3R agonist treatment exerted neuroprotective effects. These data indicate that glucose starvation is likely involved in the induction of PD-related pathological changes in dopaminergic neurons. These changes may be counteracted by the block of DA uptake and by dopaminergic agonist treatment.  相似文献   

4.
The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor α-methyl- p -tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l -DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l -DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.  相似文献   

5.
Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our "in vitro" studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, "in vivo" studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the "in situ" visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT.  相似文献   

6.
Mice treated with the psychostimulant methamphetamine (MA) showed the appearance of intracellular inclusions in the nucleus of medium sized striatal neurones and cytoplasm of neurones of the substantia nigra pars compacta but not in the frontal cortex. All inclusions contained ubiquitin, the ubiquitin activating enzyme (E1), the ubiquitin protein ligase (E3-like, parkin), low and high molecular weight heat shock proteins (HSP 40 and HSP 70). Inclusions found in nigral neurones stained for alpha-synuclein, a proteic hallmark of Lewy bodies that are frequently observed in Parkinson's disease and other degenerative disorders. However, differing from classic Lewy bodies, MA-induced neuronal inclusions appeared as multilamellar bodies resembling autophagic granules. Methamphetamine reproduced this effect in cultured PC12 cells, which offered the advantage of a simple cellular model for the study of the molecular determinants of neuronal inclusions. PC12 inclusions, similar to those observed in nigral neurones, were exclusively localized in the cytoplasm and stained for alpha-synuclein. Time-dependent experiments showed that inclusions underwent a progressive fusion of the external membranes and developed an electrodense core. Inhibition of dopamine synthesis by alpha-methyl-p-tyrosine (alphaMpT), or administering the antioxidant S-apomorphine largely attenuated the formation of inclusions in PC12 cells exposed to MA. Inclusions were again observed when alphaMpT-treated cells were loaded with l-DOPA, which restored intracellular dopamine levels.  相似文献   

7.
The neurotoxin MPTP induces nigral dopaminergic cell death in primates and produces a partial model of Parkinson's disease (PD). Pramipexole is a D2/D3 dopamine receptor agonist used in the symptomatic treatment of PD, and which also protects neuronal cells against dopaminergic toxins in vitro. We now demonstrate that pramipexole partially prevents MPTP toxicity in vivo in a primate species. Common marmosets were repeatedly treated with pramipexole either before, coincidentally with, or after low-dose MPTP treatment designed to induce a partial lesion of the substantia nigra. Animals pretreated with pramipexole had a significantly greater number of surviving tyrosine hydroxylase (TH) positive neurones in the pars compacta of the substantia nigra. Pramipexole pretreatment also prevented degeneration of striatal dopamine terminals. Treatment with pramipexole concurrently with MPTP or following MPTP did not prevent TH-positive cell loss. Pramipexole pretreatment appears to induce adaptive changes that protect against dopaminergic cell loss in primates.  相似文献   

8.
Methamphetamine (METH) produces long-term decreases in markers of dopamine (DA) terminals in animals and humans. A decrease in the function of the vesicular monoamine transporter 2 (VMAT2) has been associated with damage to striatal DA terminals caused by METH; however, a possible mechanism for this decrease in VMAT2 function has not been defined. The current study showed that METH caused a rapid decrease to 68% of controls in VMAT2 protein immunoreactivity of the vesicular fraction from striatal synaptosomes within 1 h after a repeated high-dose administration regimen of METH. This decrease was associated with a 75% increase in nitrosylation of VMAT2 protein in the synaptosomal fraction as measured by nitrosocysteine immunoreactivity of VMAT2 protein. The rapid decreases in VMAT2 persisted when evaluated 7 days later and were illustrated by decreases in VMAT2 immunoreactivity and DA content of the vesicular fraction to 34% and 51% of control values, respectively. The decreases were blocked or attenuated by prior injections of the neuronal nitric oxide synthase inhibitor, S-methyl-l-thiocitrulline. These studies demonstrate that METH causes a rapid neuronal nitric oxide synthase-dependent oxidation of VMAT2 and long-term decreases in VMAT2 protein and function. The results also suggest that surviving DA terminals after METH exposure may have a compromised capacity to buffer cytosolic DA concentrations and DA-derived oxidative stress.  相似文献   

9.
10.
Classically, Parkinson's disease (PD) is linked to dopamine neuron death in the substantia nigra pars compacta. Intracytoplasmic protein inclusions named Lewy bodies, and corresponding Lewy neurites found in neuronal processes, are also key features of the degenerative process in the substantia nigra. The molecular mechanisms by which substantia nigra dopamine neurons die and whether the Lewy pathology is directly involved in the cell death pathway are open questions. More recently, it has become apparent that Lewy pathology gradually involves greater parts of the PD brain and is widespread in late stages. In this review, we first discuss the role of misfolded α-synuclein protein, which is the main constituent of Lewy bodies, in the pathogenesis of PD. We then describe recent evidence that α-synuclein might transfer between cells in PD brains. We discuss in detail the possible molecular mechanisms underlying the proposed propagation and the likely consequences for cells that take up α-synuclein. Finally, we focus on aspects of the pathogenic process that could be targeted with new pharmaceutical therapies or used to develop biomarkers for early PD detection.  相似文献   

11.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

12.
Neurons of the substantia nigra show severe morphological changes in Parkinson's disease. Pathological alterations of cell bodies have been described, whereas those of neuronal processes have hardly been investigated. Golgi impregnation has been the chosen method for demonstrating neuronal processes and dendritic and somatic spines. We therefore used the Golgi-Braitenberg method to qualitatively and semi-quantitatively study the substantia nigra of eight patients with Parkinson's disease compared with eight control cases. Golgi impregnation of substantia nigra neurons was good in all control cases. In full agreement with the analysis of Braak and Braak (1986) three neuronal types within the substantia nigra were found. In cases of Parkinson's disease, severe pathological changes such as decrease of dendritic length, loss of dendritic spines and several types of dendritic varicosities were found only in the melanin-containing pars compacta neurons. Pars reticulata nerve cells were intact. These findings support the predominant role played by the dopaminergic efferent pathway in the degenerative process. The afferent pathway was not affected. This suggests that the substantia nigra lesion is primary in Parkinson's disease. Loss of neurons found in H & E sections corresponded to a lesser amount of impregnated pars compacta neurons in cases with Parkinson's disease when compared to controls. Evidences exist that the duration of the disease may be related to the extent of pathologically altered Golgi-impregnated pars compacta cells. The amount of Lewy bodies in H & E sections corresponded to the quantity of round varicosities in impregnated pars compacta neurons. These round dendritic varicosities were considered to be Lewy body inclusions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. Parkinson's disease (PD) is considered to be an aging-related neurodegeneration of catecholamine (CA) systems [typically A9 dopamine (DA) neurons in the substantia nigra and A6 noradrenaline (NA) neurons in the locus coeruleus]. The main symptom is movement disorder caused by a DA deficiency at the nerve terminals of fibers that project from the substantia nigra to the striatum. Most PD is sporadic (sPD) without any hereditary history. sPD is speculated to be caused by some exogenous or endogenous substances that are neurotoxic toward CA neurons, which toxicity leads to mitochondrial dysfunction and subsequent oxidative stress resulting in the programmed cell death (apoptosis or autophagy) of DA neurons. 2. Recent studies on the causative genes of rare familial PD (fPD) cases, such as alpha-synuclein and parkin, suggest that dysfunction of the ubiquitin-proteasome system (UPS) and the resultant accumulation of misfolded proteins and endoplasmic reticulum stress may cause the death of DA neurons. 3. Activated microglia, which accompany an inflammatory process, are present in the nigro-striatum of the PD brain; and they produce protective or toxic substances, such as cytokines, neurotrophins, and reactive oxygen or nitrogen species. These activated microglia may be neuroprotective at first in the initial stage, and later may become neurotoxic owing to toxic change to promote the progression toward the death of CA neurons.4. All of these accumulating evidences on sPD and fPD points to a hypothesis that multiple primary causes of PD may be ultimately linked to a final common signal-transduction pathway leading to programmed cell death, i.e., apoptosis or autophagy, of the CA neurons.  相似文献   

14.
Summary Although controversial, studies with methamphetamine and MPTP suggest a link between glutamate-mediated excitotoxicity and degeneration of dopamine cells. Both compounds are thonght to create a metabolic stress. To further explore glutamate actions in DA degeneration, we investigated the effects of other metabolic inhibitors. In mesencephalic cultures, DA cell loss produced by 3-NPA or malonate was potentiated by NMDA and prevented by MK-801. In vivo, striatal DA loss produced by intranigral infusions of malonate was also potentiated by intranigral NMDA and prevented by systemic MK-801. In contrast, systemic MK-801 did not prevent DA loss produced by intrastriatal malonate. Intrastriatal MK-801 or CGS 19755 did attenuate DA loss in METH-treated mice, but was confounded by the findings that METH-induced hyperthermia, an important component in toxicity, was also attenuated. Taken together, the data support the hypothesis of NMDA receptor involvement in degeneration of DA neurons. Furthermore, the data also suggest that this interaction is likely to occur in the substantia nigra rather than in the striatum.  相似文献   

15.
In vivo electrical stimulation of the frontal cortical areas was found to enhance sodium-dependent high-affinity glutamate uptake (HAGU) measured in rat striatal homogenates. This activating effect was counteracted by in vivo administration of apomorphine and by in vitro addition of dopamine (DA; 10(-8) M) in the incubation medium, and potentiated by in vivo haloperidol administration. At the doses used, the dopaminergic compounds had no effect on basal HAGU. alpha-Methylparatyrosine pretreatment was found to enhance slightly basal HAGU as well as the activating effects of cortical stimulation. Interestingly enough, lesion of dopaminergic neurons by substantia nigra injection of 6-hydroxydopamine (6-OHDA) did not cause any significant change either in basal HAGU or in the effect of cortical stimulation. Measurement of DA effects in vitro in experiments combined with in vivo manipulations of the dopaminergic nigrostriatal and corticostriatal systems showed that the capacity of DA to inhibit striatal HAGU depends directly on the level of the uptake activation reached over basal value. These results suggest that under physiological conditions, the dopaminergic nigrostriatal pathway exerts a modulatory presynaptic action on corticostriatal glutamatergic transmission, counteracting increasing glutamatergic activity. In the case of chronic DA depletion induced by 6-OHDA, striatal adaptations may occur modifying the mechanisms acting at corticostriatal nerve terminal level.  相似文献   

16.
Our hypothesis was tested in respect to dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the DA synthetic pathway. According to the hypothesis, L-dihydroxyphenylalanine (L-DOPA) synthesised in tyrosine hydroxylase(TH)-expressing neurons for conversion to dopamine. The mediobasal hypothalamus of rats on the 21st embryonic day was used as an experimental model. The fetal substantia nigra containing dopaminergic neurons served as control. Dopamine and L-DOPA were measured by high performance liquid chromatography in cell extracts and incubation medium in presence or absence of L-tyrosine. L-tyrosine administration increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of dopamine synthesis in substantia nigra and a decrease in the mediobasal hypothalamus. This is, probably, due to an L-tyrosine-induced competitive inhibition of the L-DOPA transport to monoenzymatic AADC neurons after its release from the monoenzymatic TH neurons. This study provides a convincing evidence of dopamine synthesis by non-dopaminergic neurons expressing TH or AADC, in cooperation.  相似文献   

17.
A monoclonal antibody recently synthesized against dopamine (DA) was tested in rat and mouse brain sections after further treatment by PAP immunocytochemistry at the light and electron microscopic levels. Distribution of DA-immunoreactive cell bodies was examined in the substantia nigra (sn), the ventral tegmental area (vta), and the raphe nuclei. DA-immunoreactive fibers were investigated in two DA projection systems, the striatum and the septum. Many dopaminergic cell bodies were found in the sn and the vta. Some scattered DA neurons were encountered in the pars reticulata of the sn. The dorsal raphe and linearis raphe nuclei displayed sparse immunoreactive neurons and a dense plexus of DA fibers. Immunoreactive fibers were observed in the entire striatum, more dense in the ventral part. In the septum, immunonegative neurons were outlined by thin DA fibers in synaptic contact with their somata or dendrites. According to our observations, this DA monoclonal antibody seems to be a selective and sensitive tool for studying the dopaminergic neuronal circuitry at both histological and ultrastructural level.  相似文献   

18.
In this preliminary report we showed that 3,4-dihydroxyphenylacetic acid (DOPAC), the major metabolite of dopamine (DA), is present in the ventral tegmental area. This finding indicates that in the ventral tegmental area, which contains the cell bodies of dopaminergic neurons of the mesocortical and mesolimbic DA systems, DA may be released by a mechanism similar to that operating in the nerve endings. However, haloperidol, which increases DOPAC levels in the substantia nigra, failed to do so in the ventral tegmental area. The results support the contention that DA neurons in the ventral tegmental area have distinctive features from nigral DA neurones.  相似文献   

19.
We have recently shown that the hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) is neuroprotective in rodent stroke models, and that this action appears to be mediated via a neuronal G-CSF receptor. Here, we report that the G-CSF receptor is expressed in rodent dopaminergic substantia nigra neurons, suggesting that G-CSF might be neuroprotective for dopaminergic neurons and a candidate molecule for the treatment of Parkinson's disease. Thus, we investigated protective effects of G-CSF in 1-methyl-4-phenylpyridinium (MPP+)-challenged PC12 cells and primary neuronal midbrain cultures, as well as in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. Substantial protection was found against MPP+-induced dopaminergic cell death in vitro. Moreover, subcutaneous application of G-CSF at a dose of 40 microg/Kg body weight daily over 13 days rescued dopaminergic substantia nigra neurons from MPTP-induced death in aged mice, as shown by quantification of tyrosine hydroxylase-positive substantia nigra cells. Using HPLC, a corresponding reduction in striatal dopamine depletion after MPTP application was observed in G-CSF-treated mice. Thus our data suggest that G-CSF is a novel therapeutic opportunity for the treatment of Parkinson's disease, because it is well-tolerated and already approved for the treatment of neutropenic conditions in humans.  相似文献   

20.
6-Hydroxydopamine (6-OHDA)-induced loss of dopamine (DA) neurons has served to produce an animal model of DA neuron loss in Parkinson's disease. We report here the use of 6-OHDA to produce an in vitro model of this phenomena using dissociated cultures prepared from neonatal rat mesencephalon. Cultures were exposed to 6-OHDA (40-100 microm, 15 min) in an antioxidant medium, and DA and GABA neurons evaluated by immunocytochemistry. 6-OHDA induced morphological and biochemical signs of cell death in DA neurons within 3 h, followed by loss of tyrosine hydroxylase immunoreactive neurons within 2 days. In substantia nigra (SN) cultures, DA neurons were much more affected by 6-OHDA than were GABA neurons. In contrast, DA neurons from the ventral tegmental area were only lost at higher, non-specific concentrations of 6-OHDA. The effects of 6-OHDA on nigral DA neurons were blocked by inhibitors of high affinity DA transport and by z-DEVD-fmk (150 microm), a caspase inhibitor. Glial cell line-derived neurotrophic factor (GDNF) treatment reduced TUNEL labeling 3 h after 6-OHDA exposure, but did not prevent loss of DA neurons at 48 h. Thus, 6-OHDA can selectively destroy DA neurons in post-natal cultures of SN, acting at least in part by initiating caspase-dependent apoptosis, and this effect can be attenuated early but not late by GDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号