首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
Cathepsin D (CatD) is a lysosomal aspartic proteinase and plays an important role in the degradation of proteins and in apoptotic processes induced by oxidative stress, cytokines, and aging. All of these stimuli are potent inducers of endothelial cell apoptosis. Therefore, we investigated the role of CatD in endothelial cell apoptosis and determined the underlying mechanisms. Incubation with 100-500 microm H2O2 for 12 h induced apoptosis in endothelial cells. To determine a role for CatD, we co-incubated endothelial cells with the CatD inhibitor pepstatin A. Pepstatin A as well as genetic knock down of CatD abolished H2O2-induced apoptosis. In contrast, overexpression of CatD wild type but not a catalytically inactive mutant of CatD (CatDD295N) induced apoptosis under basal conditions. To gain insights into the underlying mechanisms, we investigated the effect of CatD on reactive oxygen species (ROS) formation. Indeed, knocking down CatD expression reduced H2O2-induced ROS formation and apoptosis. The major redox regulator in endothelial cells is thioredoxin-1 (Trx), which plays a crucial role in apoptosis inhibition. Thus, we hypothesized that CatD may alter Trx protein levels and thereby promote formation of ROS and apoptosis. Incubation with 100 microm H2O2 for 6 h decreased Trx protein levels, whereas Trx mRNA was not altered. H2O2-induced Trx degradation was inhibited by pepstatin A and genetic knock down of CatD but not by other protease inhibitors. Incubation of unstimulated cell lysates with recombinant CatD significantly reduced Trx protein levels in vitro, which was completely blocked by pepstatin A pre-incubation. Overexpression of CatD reduced Trx protein in cells. Moreover, H2O2 incubation led to a translocation of Trx to the lysosomes prior to the induction of apoptosis. Taken together, CatD induces apoptosis via degradation of Trx protein, which is an essential anti-apoptotic and reactive oxygen species scavenging protein in endothelial cells.  相似文献   

2.
3.
Thioredoxin-1 (Trx-1) is a small redox oncoprotein whose expression is increased in a number of human primary cancers where it is associated with aggressive tumor growth, inhibition of apoptosis and decreased patient survival. We report that Trx-1-transfected MCF-7 human breast cancer cells have increased expression of thioredoxin peroxidase-1 (TrxP-1) a peroxiredoxin family member that scavenges H(2)O(2) using Trx-1 as a source of reducing equivalents. Our work shows that TrxP-1 is more effective than selenium-dependent glutathione peroxidase in protecting cells against H(2)O(2) damage. Transfection of mouse WEHI7.2 lymphoma cells with human TrxP-1 or TrxP-2, but not TrxP-4, protects the cells against H(2)O(2) induced apoptosis but does not protect against apoptosis induced by dexamethasone, etoposide, or doxorubicin. The results show that an increase in TrxP-1 expression contributes to the protection against H(2)O(2) induced apoptosis caused by Trx-1, but does not protect against apoptosis induced by other agents.  相似文献   

4.
We previously showed that low doses (0.25-0.5 Gy) of γ-rays elevated thioredoxin (Trx-1) in various organs of mice after whole-body irradiation. Also, it is reported that extracellular ATP, which is released in response to various stresses, regulates the expression of intracellular antioxidants through activation of P2 receptors. We have recently found that low-dose γ-rays induce ATP release from the exposed cells. However, it is not yet clear whether the radiation-induced extracellular ATP modulates the cellular redox balance. Here, we investigated whether γ-ray irradiation-induced release of extracellular ATP contributes to the induction of the cellular antioxidant Trx-1, using mouse macrophage-like RAW264.7 cells. Irradiation with γ-rays or exogenously added ATP increased the expression of Trx-1, and in both cases the increase was blocked by pretreatment with an ectonucleotidase, apyrase. Then, the involvement of ATP-dependent reactive oxygen species (ROS) generation in the increase in antioxidant capacity was examined. ATP stimulation promoted the generation of intracellular ROS and also increased Trx-1 expression. The increase in Trx-1 expression was significantly suppressed by pretreatment of the cells with antioxidants. In conclusion, the γ-ray irradiation-induced release of extracellular ATP may, at least in part, contribute to the production of ROS via purinergic signaling, leading to promotion of intracellular antioxidants as an adaptive response to an oxidative stress.  相似文献   

5.
Apoptosis plays an important role in modulating the pathogenesis of a variety of infectious diseases. Chlamydial infection protects cells against different forms of apoptosis: extrinsic, intrinsic, and granzyme B mediated. Redox reactions are central to the life and death decision of cells and pathogens and an intimate relationship exists between oxidative stress and iron metabolism. The link between redox status and ferritin was largely unexplored in chlamydia-infected cells. In the present study, we showed that Chlamydia trachomatis (CT) infection induced FHC protein in HeLa cells. FHC induction by CT-infected cells stably expressing FHC blunted ROS production compared with mock infected cells, and the infected cells were relatively resistant to apoptosis induced by H?O?. We also demonstrated that endogenous FHC overexpression correlates well with the stabilization of the mitochondrial membrane potential in CT-infected cells. Increased expression of FHC is independent of iron supplementation (FAC) and depletion (DFO) in CT-infected cells. These data suggest that FHC up-regulation is an acute response of HeLa cells against CT infection and that FHC exerts anti-apoptotic activity against oxidative stress.  相似文献   

6.
7.
Jin Q  Kang C  Soh Y  Sohn NW  Lee J  Cho YH  Baik HH  Kang I 《Life sciences》2002,71(17):2053-2066
Tetrandrine (TET), a plant alkaloid, is known primarily as a non-selective Ca(2+) channel blocker. On the contrary to the cytoprotective effect on ischemia/reperfusion injury, TET has also been reported to cause cytotoxicity. In this study, we wished to understand the apparently disparate effects of this potential drug and thus investigated molecular mechanisms on proliferation and apoptosis and its effect on oxidative stress-induced apoptosis in Neuro 2a mouse neuroblastoma cells. We showed that TET, at high concentrations, induced cell cycle arrest and apoptosis through oxidative stress with following observations. Firstly, 10 microM TET elevated the reactive oxygen species (ROS) level and accordingly depleted glutathione (GSH) content. Secondly, pretreatment with antioxidants (NAC or GSH) protected cells from TET-induced apoptosis. We also demonstrated that treatment with 10 microM TET caused not only induction of p53, p21(waf1), and Bax, but also nuclear translocation of p53 and hypo-phosphorylation of pRb concurrently. Our important finding is that the concentration-dependent dual effect of TET, either inhibiting or promoting cell death induced by H(2)O(2) was observed, probably through regulating redox balance, which was well reflected on the GSH content in each condition. Besides, inhibition of Ca(2+) influx protected cells from H(2)O(2)-induced apoptosis even in the presence of 10 microM TET. Taken together, our data suggest that TET regulation of cellular redox states may play a major role in its dual action of cytotoxicity and cytoprotection.  相似文献   

8.
In muscle cells, reactive oxygen species (ROS) are continually generated. It is believed that these molecules have a well-established role as physiological modulators of skeletal muscle functions, ranging from development to metabolism and from blood flow to contractile functions. Moreover, ROS may contribute to the development of muscle fatigue, inflammation, and degeneration, and may be implicated in many muscle diseases. The aim of the present study was to verify the role of short or prolonged exposure to oxidative stress, generated by different concentrations of H(2)O(2), on growth, chromosomal aberrations, and apoptosis induced in cultured L6C5 rat muscle cells used as model for myoblasts. Our results indicate that, in L6C5 cells, reactive oxygen intermediates (ROI) can activate distinct cell pathways leading to cell growth induction and development of resistant phenotype, or to chromosomal aberrations, cell cycle arrest, or cell death. The positive vs. negative effects of H(2)O(2)-altered redox potential in myoblasts are strictly related to the intensity of oxidative stress, likely depending on the types and number of cellular targets involved. Among these, DNA molecules appear to be very sensitive to breakage by H(2)O(2), although DNA damage is not directly responsible for ROI-induced apoptosis in L6C5 rat myoblasts.  相似文献   

9.
Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.  相似文献   

10.
11.
Dopamine (DA), one of the major sources of reactive oxygen species (ROS), is implicated in neuronal death associated with Parkinson's disease (PD). Preconditioning with oxidative stress has been shown to provide cytoprotection similar to ischemic preconditioning (IPC), against cell apoptosis. In this study, using the model neurosecretory cell line, PC12, we investigated whether hydrogen peroxide (H(2)O(2)) at low concentration (10 microM) can protect PC12 cells against apoptosis induced by DA. PC12 cells were preconditioned with 10 microM H(2)O(2) for 90 min, followed by 24-h recovery and subsequent exposures to different concentrations (20, 50, 100 and 200 microM) of DA for 24-h, respectively. DA induced apoptotic cell death with significant morphological nuclear changes and DNA fragmentation as well as the dysfunction of mitochondria. Preconditioning with H(2)O(2) at 10 microM significantly reduced the percentage of apoptotic cells and partly blocked the decreases in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction and mitochondrial membrane potential (MMP) induced by DA. These results suggest that preconditioning with low concentration of H(2)O(2) protected PC12 cells against DA-induced apoptosis, the part restoration of the damaged mitochondrial functions might be one of the underlying mechanisms of this cytoprotection.  相似文献   

12.
This study investigates the potential role of the ferric/ferryl redox cycle of myoglobin (Mb) in the development of endothelial cell injury. Bovine aortic endothelial cells were incubated with ferric Mb (0.5-100 micro M) in the presence or absence of low steady states of H(2)O(2) (3-4 micro M) generated by glucose oxidase (GOX). The reaction of ferric Mb with H(2)O(2) generated ferryl Mb as monitored spectrophotometrically. Ferryl Mb formation correlated with the induction of apoptosis as indicated by morphological criteria, caspase 3 activation, phosphatidylserine (PS) externalization, and nuclear condensation by Hoechst 33342 staining. The addition of ascorbate or catalase inhibited the formation of ferryl Mb and the onset of apoptosis, whereas apoptosis was enhanced in cells depleted of intracellular glutathione by pretreatment with buthionine sulfoximine. Mb and Mb/GOX suppressed cell cycle progression, but only Mb/GOX produced significant cell loss revealed by the accumulation of sub G1 events. These results suggest a role for the Mb redox cycle in the induction of endothelial cell apoptosis, which may be relevant in the pathophysiology of diseases characterized by the release of Mb from damaged muscle.  相似文献   

13.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

14.
Human cytomegalovirus (HCMV) exerts anti-apoptotic effect during early stage of infection, which provides HCMV time for propagation. We investigated pathways mediating the resistance to H(2)O(2)-induced cell death - a self-defense mechanism to remove infected cells. We found that human aortic endothelial cells (HAECs) infected with VHL/E strain of HCMV during first 3 days were resistant to H(2)O(2) (0-2 mM) induced apoptosis. This anti-apoptotic effect may be mediated by the upregulation of Bcl-2, an anti-apoptotic protein through the activation pro-survival pathway extracellular signal regulated kinase (ERK). Through this mechanism, HCMV is able to propagate and causes endothelial dysfunction, hence vascular disease.  相似文献   

15.
16.
Several activators of bovine leukemia virus (BLV) expression, including lipopolysaccharides, phorbol esters and calcium ionophores, are known to generate reactive oxygen species (ROS). Therefore the influence of H2O2 on BLV expression in two BLV producing cell lines was investigated. The effect of H2O2 on BLV expression is apparently dose-dependent. Incubation of FLK/BLV cells with low concentrations of H2O2 (2.5 to 10 microM) induced a marked enhancement of BLV p24 synthesis and an activation of the long terminal repeat (LTR). Higher concentrations resulted in a decrease of proliferation, induction of apoptosis and in a decrease of BLV synthesis. Furthermore, in both cell lines H2O2 treatment led to the activation of NF-kappaB. Pretreatment of cells with antioxidants abrogated the H2O2-induced BLV expression. Taken together, our findings suggest that oxidative stress stimulates BLV expression via activation of NF-kappaB, raising the possibility that biological sources of H2O2, such as stimulated phagocytes, may influence BLV expression.  相似文献   

17.
Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.  相似文献   

18.
Intracellular defence mechanisms against oxidative stress may play an important role in the progression of liver diseases, including cholangiopathies. The multifunctional anti-apoptotic hepatocyte growth factor (HGF) has been suggested to have antioxidant functions. The effect of HGF upon cell viability, the generation of ROS, the expression of genes that play a role in ROS defence, and the activation of caspase-3 were measured in bile duct epithelial (BDE) cells in the presence or absence of H(2)O(2). HGF reduced H(2)O(2)-induced loss of viability, diminished H(2)O(2)-mediated ROS generation and abrogated H(2)O(2)-triggered changes in GSH/GSSG ratio. Furthermore, HGF increased the gene-expression of gamma-glutamylcysteine synthetase (GCLC) and glutathione reductase (GSR), while no effect was seen upon the gene-expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase (GPX1), and glutathione synthetase (GSR). Finally, HGF diminished the proteolytical activation of the key mediator of apoptosis (caspase-3) after H(2)O(2) exposure. Together, HGF may improve viability in bile duct epithelia cells after H(2)O(2) induced toxicity by proliferation, strengthening the intrinsic antioxidant defences, and/or by an attenuation of apoptosis. These in vitro results support the evaluation of HGF as antioxidative factor in hepatobiliary pathologies.  相似文献   

19.
Retinoic acid induces apoptosis of various cells, whereas little is known about its anti-apoptotic potential. In this report, we describe an anti-apoptotic property of all-trans-retinoic acid (t-RA) in mammalian cells. Mesangial cells exposed to hydrogen peroxide (H2O2) exhibited shrinkage of the cytoplasm, membrane blebbing, condensation of nuclei, and DNA fragmentation. Pretreatment with t-RA attenuated the morphologic and biochemical hallmarks of apoptosis. t-RA also inhibited apoptosis of mesangial cells triggered by pyrrolidine dithiocarbamate, whereas it did not prevent tumor necrosis factor-alpha-induced apoptosis. The anti-apoptotic effect against H2O2 was similarly observed in NRK49F fibroblasts, but not in Madin-Darby canine kidney epithelial cells and ECV304 endothelial cells. Mesangial cells exposed to H2O2 undergo apoptosis via the activator protein 1 (AP-1)-dependent pathway. We found that t-RA abrogated the H2O2-induced expression of c-fos/c-jun and activation of AP-1. Furthermore, t-RA inhibited H2O2-triggered activation of c-Jun N-terminal kinase (JNK), and dominant-negative inhibition of JNK attenuated the H2O2-induced apoptosis. These data disclosed the novel potential of retinoic acid as an inhibitor of apoptosis. The anti-apoptotic action of t-RA was ascribed, at least in part, to dual suppression of the cell death pathway mediated by JNK and AP-1.  相似文献   

20.
Apoptosis is an important cell death system that deletes damaged and mutated cells, preventing the induction of cancer. We previously have reported that UV irradiation inhibited the apoptosis induced by serum starvation and cell detachment. This phenomenon is suitable for clarifying the relationship between cancer and the dysregulation of apoptosis by UV irradiation. Here, we have studied the factors responsible for this inhibition of apoptosis, focusing on reactive oxygen species (ROS) and DNA damage. Treatment with xanthine oxidase in the presence of hypoxanthine, which is known to produce superoxide anion (O2*-) and hydrogen peroxide (H2O2), inhibited the induction of apoptosis. The xanthine oxidase-induced anti-apoptotic effect was suppressed in the presence of an H2O2-eliminating enzyme, catalase, but not in the presence of an O2*--eliminating enzyme, superoxide dismutase. Treatment with H2O2 itself significantly inhibited the induction of apoptosis. Furthermore, the effect of the inhibition of cell death by UVB irradiation and by H2O2 treatment decreased in H2O2-resistant cells. Although both UVB and H2O2 are known to induce DNA damage, other DNA damaging agents, like gamma-irradiation and treatment with cisplatin and bleomycin, showed no inhibition of apoptosis. These findings suggested that H2O2 was essential to the inhibition of apoptosis, in which DNA damage had no role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号