首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonshivering thermogenesis (NST) is a main source of heat for many small mammals. It undergoes seasonal changes, being the highest in winter and the lowest in summer. Such acclimatization can ensure winter survival for species living in moderate or cold climates. Nevertheless, not only seasonal, but also daily changes in the capacity for NST seem to be of great importance. In this study, the effects of season and time of day on the temperature of brown adipose tissue (T(BAT)), preferred ambient temperature (PT(a)) and activity after noradrenaline (NA) injections in golden hamsters (Mesocricetus auratus) housed under semi-natural conditions were investigated. Animals were kept in outdoor enclosures and experienced natural changes in both, photoperiod and ambient temperature (T(a)). NA-induced hyperthermia was the largest during autumn (mean increase in T(BAT) by 0.74+/-0.04 degrees C), while during summer increase in T(BAT) was similar to that recorded in control (saline-injected) animals (0.16+/-0.05 degrees C and 0.24+/-0.04 degrees C, respectively). In spring hyperthermia was intermediary (0.57+/-0.05 degrees C). Daily variations in the response to NA depended on the season. In summer, the largest increase in T(BAT) (0.45+/-0.1 degrees C) was recorded during the first part of the day, while in autumn-in the middle of the day and night (1.1+/-0.1 degrees C and 0.9+/-0.1 degrees C, respectively). In spring, all NA injections induced large increase in T(BAT) except for the injection in the middle of the night. The largest decrease in PT(a) after NA administration was recorded in autumn (mean decrease by 1.5+/-0.3 degrees C). Both, seasonal and daily changes in the capacity for NST reflect different demands for heat dependently on the time of the year and time of the day. It can be concluded that although long history of breeding in captivity, golden hamsters preserved ability to survive in natural environment.  相似文献   

2.
We studied the influence of light-dark (L:D) cycle reversal on daily variations in the brown adipose tissue (BAT) capacity for nonshivering thermogenesis (NST) in Siberian hamsters (Phodopus sungorus). Continuous and simultaneous measurements of BAT temperature (T(BAT)) and preferred ambient temperature (PT(a)) were made after noradrenaline (NA) injections administered every 4 hr. First, hamsters were acclimated for 4 weeks to an ambient temperature (T(a)) of 23 degrees C and 12L:12D, and then to a reversed photoschedule 12D:12L for 8 weeks. The same was done after a 4- and 8-week acclimation period at the same T(a). We found that after photoschedule reversal, the re-entrainment of T(BAT) and PT(a) rhythms preceded re-entrainment of the NST rhythm. The daily rhythms of T(BAT) and PT(a) were fully re-entrained after 4 weeks of acclimation to the reversed photoschedule, but rhythmicity of the response to NA disappeared. This rhythm was restored in hamsters acclimated to a reversed photoschedule for 8 weeks. We suggest that the daily rhythm of NST capacity is not responsible for generating the rhythm of body temperature (T(b)). Rather, it is a result of the daily rhythm of T(b), but adjusts to the new environment more slowly than the T(b) rhythm. When a daily rhythm of NST was present, the increase in T(BAT) after NA injection was inversely correlated with the pre-injection T(BAT). In addition, NA-induced changes in PT(a) reflected the intensity of NST in BAT; namely, increased T(BAT) was correlated with the post-injection decrease in PT(a). When the increase in T(BAT) was large, animals chose a lower T(a) to dissipate excessive heat and prevent overheating. In the course of the experiments, we recorded a decreased mean NST capacity and increased body mass of hamsters. These changes are representative of the time of photorefractoriness and a transition to a summer status. Despite prolonged exposure to an intermediate day length (12 hr of light) and photoschedule reversal, hamsters continued to change towards their summer condition and were able to acclimate to the new D:L cycle.  相似文献   

3.
We investigated the effect of prolonged acclimation to 12 hr of light and photo-schedule reversal during the time of photosensitivity in golden hamsters (Mesocricetus auratus). Before the experiments, animals were housed under natural photoperiod and then transferred to 12L:12D (light 12 hr:dark 12 hr) in autumn for 12 weeks. After 4 weeks of acclimation, photo-schedule was reversed (12D:12L). First experiments were done after 4 weeks of acclimation to an ambient temperature (T(a)) of 23 degrees C and a 12L:12D photo-schedule. We examined the daily variations in brown adipose tissue (BAT) capacity for nonshivering thermogenesis (NST). Noradrenaline (NA) injections were given every 4 hr while BAT temperature (T(BAT)) and preferred ambient temperature (PT(a)) were monitored continuously and simultaneously in a thermal gradient system. Then, we investigated the effect of light-dark cycle reversal on a daily rhythm of NST. The hamsters were acclimated to the photo-schedule reversed by 12 hr and the same T(a). After 4 and 8 weeks of acclimation to a reversed photo-schedule, the experiments were repeated. We found that the daily rhythm of the response to NA was entrained to the new light-dark cycle after 4 weeks of acclimation to a reversed photo-schedule. Maximum effect of NA was always recorded during the light phase and in the latter part of the dark phase of the day. NA-induced increase in T(BAT) was correlated with the decrease in PT(a), and was also inversely correlated with pre-injection T(BAT). These data imply that the daily rhythm of the capacity for NST opposes the daily rhythm of body temperature (T(b)). After 8 weeks of acclimation to the reversed photo-schedule, the rhythmicity of the response to NA disappeared, and the daily fluctuations in T(BAT) were the smallest. This lack of rhythm may be a physiological adaptation to winter conditions when the daily amplitude of T(b) rhythm is markedly reduced and, as a consequence, NST capacity does not vary within the day. Moreover, after 8 weeks of acclimation to reversed photo-schedule, NST capacity decreased while response to saline increased. During the experiments, hamsters were photosensitive and were changing to their winter status. However, because of the lack of cold during acclimation, the capacity for NST did not increase. Increased responsiveness to saline, indicating an increase in stress-induced thermogenesis, might be advantageous for "fight or flight" reaction.  相似文献   

4.
We investigated the daily rhythm of the response to noradrenaline injections in Djungarian hamsters (Phodopus sungorus sungorus) at neutral ambient temperature, under long photoperiod (L:D 12:12) and after four weeks of acclimation to cold (10ºC) and short photoperiod (L:D 8:16). Animals were injected with noradrenaline (0.6 mg/kg) every four hours. Body temperature and gross motor activity were measured with MiniMitter transmitters implanted into abdominal cavity. Additionally, we measured body weight and food intake prior to, and after acclimation. After four weeks of acclimation, the experiment was performed under LD cycle and then repeated during one-day of constant light (LL) and constant darkness (DD). In animals acclimated to L:D 12:12 and ambient temperature of 25ºC, noradrenaline injections caused short-lasting increase in body temperature followed by marked decrease. There was no significant difference in the magnitude of the reaction between light and dark phase of the day. After acclimation to cold and L:D 8:16, under LD conditions, we recorded significant differences between the responses to the noradrenaline injections during light and dark phase of the day. Post-injection increase was higher during the day than during the night while following noradrenaline-induced hypothermia was much more pronounced in darkness. In experiments performed after acclimation to cold and short photoperiod but during one day of LL and DD regimes, these differences were attenuated. Data presented here indicate that in cold acclimated hamsters, the response to exogenous noradrenaline depends on the time of injection and it exhibits clear daily rhythm. The rhythmicity is altered under LL and DD regimes. It seems that post-injection increase in body temperature elicits following hypothermia. This hypothermia might be of a great ecological importance. Reasonable lowering of body temperature would be a protective mechanism, allowing for energy charge restoration.  相似文献   

5.
We investigated the correlation between torpor frequency and capacity for non-shivering thermogenesis (NST) in Siberian hamsters (Phodopus sungorus) during 25 weeks of acclimation to cold and short days. We hypothesized that torpor use is conditioned on the development of brown adipose tissue (BAT) capacity for NST. We found that (1) the degree of noradrenaline (NA)-induced hyperthermia was positively correlated with torpor frequency and its length and depth, and (2) the maximum response to NA occurred at the time of day when hamsters naturally arouse from torpor. The present study quantifies the correlation between torpor frequency and NST capacity and we suggest that a well-developed NST capacity is a prerequisite for the occurrence of torpor.  相似文献   

6.
Daily rhythms of nonshivering thermogenesis NST were studied in common spiny mice Acomys cahirinus, acclimated to different photoperiod regimes (16L:8D and 8L:16D) at a constant ambient temperature of 26°C. Noradrenaline NA (1.5 mg/kg subcutaneous) was injected at: 06:00, 12:00, 18:00 and 24:00 h (±15 min). NST was measured as the ratio between the maximal oxygen consumption (VO2) as response to NA — VO2NA and VO2 measured at 26°C — VO2 min. Rectal temperatures TbNA and Tb min respectively were recorded at the end of VO2 measurements. Significant variations in Tb min, TbNA, and NST were revealed, under the two different photoperiod regimes. Significant differences in VO2 min, NST, Tb min and TbNA were also recorded within each photoperiod acclimation group. These results suggest that daily and photoperiod depended variations in the brown adipose tissue activity, presumably emerge from amount of unoccupied receptors or changes in the receptors affinity to NA.  相似文献   

7.
Proper adjustments of the thermoregulatory mechanisms ensure survival in the natural environment. In the present study, we tested the hypothesis that laboratory golden hamsters (Mesocricetus auratus) housed under seminatural outdoor conditions are able to acclimatize to daily and seasonal changes in the environment despite their long history of breeding in captivity. The animals experienced natural changes in the photoperiod and ambient temperature characteristic for central Poland. During experiments in the thermal gradient system, the daily rhythms of body temperature (measured as the temperature of brown adipose tissue, TBAT), preferred ambient temperature (PTa) and activity were measured in summer, autumn and spring. We found that mean TBAT was highest in autumn and least in summer, reflecting seasonal changes in the capacity for nonshivering thermogenesis (NST). In summer, TBAT followed the robust daily rhythm with the amplitude of 1.1+/-0.1 degrees C. This amplitude was depressed in autumn (0.2+/-0.1 degrees C) and partially restored in spring (0.4+/-0.1 degrees C). Seasonal changes in the daily amplitude of TBAT recorded during both transitional periods, i.e., in autumn and spring, seem to be associated with hamsters' hibernation. In autumn, mean daily PTa was lower than in summer and spring, indicating the lowering of a set point for core body temperature (Tb) regulation. Locomotor activity was much higher in spring than in summer and autumn, and it always predominated at night. We conclude that laboratory golden hamsters housed under seminatural conditions express daily and seasonal changes in the thermoregulatory mechanisms that, despite long history of breeding in captivity, enable proper acclimatization to seasonally changing environment and ensure successful hibernation and winter survival.  相似文献   

8.
We aimed to investigate whether infra red thermography (IRT) can be used to measure and quantify non-shivering thermogenesis (NST) in the short-tailed field vole Microtus agrestis, by directly comparing it with a standard method, i.e. metabolic response following Noradrenaline injection (NA). Mean skin surface temperature overlying Brown adipose tissue (BAT) depot was 0.82 degrees C higher than mean surface temperature that did not overly BAT. The difference in temperature increased by 1.26 degrees C after NA was administered. Mean skin surface temperature overlying BAT increased by 0.32 degrees C after NA was administered; however, surface temperature decreased by 1.32 degrees C after saline was administered. Mean skin surface temperature overlying BAT did not change significantly between warm and cold acclimated voles; in contrast metabolic peak following NA injection significantly increased in cold acclimated voles. There was no significant correlation between change in surface temperature after NA injection and metabolic peak following NA injection. The results of this study suggest that IRT is not a sensitive enough method to measure changes in NST capacity in BAT following NA injection, or to detect changes in NST capacity induced by cold acclimation. However, IRT can distinguish between skin surfaces overlying BAT and skin surfaces that do not.  相似文献   

9.
The reproductive system of Siberian hamsters (Phodopus sungorus) undergoes rapid phenotypic responses to changes in day length that occur around the time of weaning. The present experiments tested whether the immune system of Siberian hamsters is similarly photoperiodic early in life and whether photoperiodic changes in melatonin or gonadal hormone secretions mediate any such responses to day length. Circulating blood leukocyte concentrations (WBC) were measured in juvenile male Siberian hamsters that were gestated in long-days (LD), transferred to short-days (SD) on the day of birth, and subsequently either remained in SD or were transferred from SD to LD at 18 days of age (day 18). WBC values were comparable between LD and SD hamsters on day 18. Between day 18 and day 32, SD hamsters exhibited a 3-fold increase in WBC, whereas LD hamsters failed to undergo a significant increase in WBC during this interval. WBC of LD hamsters was significantly lower than that of SD hamsters on day 25 and on day 32. In LD housed males, peripheral injections of melatonin delivered so as to extend the nocturnal duration of elevated endogenous melatonin secretion (i.e., provided in late afternoon) on days 18-31 increased WBC as measured on day 32. Peripubertal (day 17) gonadectomy abolished the immunosuppressive effect of LD exposure on WBC, and treatment with silastic implants containing testosterone suppressed WBC independent of photoperiod treatment. These data indicate that juvenile Siberian hamsters are immunologically responsive to photoperiod and that the leukocyte responses to day length are the result of melatonin-mediated effects of photoperiod on testicular hormone secretion.  相似文献   

10.

1. 1.|The migratroy hamster Cricetulus migratorius, a small nocturnal rodent, inhabits ecosystems characterized by dramatic seasonal fluctuations of ambient temperatures. The aim of this study was to assess seasonal acclimatization of its thermoregulatory system.

2. 2.|Heat production by means of oxygen consumption and body temperature in various ambient temperatures as well as non-shivering thermogenesis were measured in C. migratorius. The hamsters were acclimated to two different photoperiod regimes (16L:8D and 8L:16D) at a constant ambient temprature of 24°C. Overall thermal conductance was calculated for such hamsters.

3. 3.|The results of this study indicate that photoperiod manipulations adjust the thermoregulatory system of the migratory hamster mainly by affecting overall thermal conductance.

Author Keywords: Acclimatization; photoperiod; heat production; body temperature; NST; hamster; Cricetulus migratorius  相似文献   


11.
Peripubertal reproductive development of Siberian hamsters is controlled by maternally derived photoperiodic information and the ambient photoperiod present after weaning. Previous experiments suggested that the maternally derived information is transferred during gestation, not during lactation. Development was examined in several photoperiods following manipulation of gestational and lactational photoperiods; development was influenced by the gestational, but not lactational, photoperiod. Second, effects of the gestational photoperiod were observed in young reared in constant light (LL) from Day 15. Depriving the young of ambient photoperiodic information after Day 15 allows a more direct assessment of the signal received from their dams. Finally, melatonin injections to long-day dams, at certain times of day, caused transmission of a short-day signal to young, as evidenced by their development in LL and light-dark cycles. Thus, a maternally derived signal that is dependent on melatonin influences reproductive development of the young during gestation; the maternally directed pattern of development can subsequently be modified by the youngs' own response to ambient photoperiods after weaning.  相似文献   

12.
During NA-induced NST blood flow through BAT increased from 0.18 ml min-1 to 3.21 ml min-1 in 23 degrees C acclimated (equals thermoneutrality) and from 0.61 ml min-1 to 9.67 ml min-1 in outdoors (-2 to 12 degrees C Ta) acclimated Djungarian hamsters. In 23 degrees C acclimated hamsters this increase was accomplished by a diversion of blood flow from visceral organs without a change in cardiac output (19.7 versus 20.5 ml min-1 before and after NA). In outdoors acclimated hamsters we also observed a redistribution of blood flow from the viscera to BAT. In addition, cardiac output increased from 24.3 to 38.8 ml min-1. Metabolic rate of BAT in situ was determined from organ blood flow and the (A-V)O2 of blood across the interscapular BAT. BAT of outdoor acclimated hamsters showed a significantly higher metabolism in comparison to 23 degrees C acclimated hamsters (81.1 versus 30.4 mlO2h-1). Furthermore, this calculation revealed that 28% (23 degrees C acclimated hamsters) and 61% (outdoors acclimated hamsters) of total NST were located in BAT of Phodopus sungorus.  相似文献   

13.
Siberian hamsters (Phodopus sungorus) have the ability to express daily torpor and decrease their body temperature to approximately 15 degrees C, providing a significant savings in energy expenditure. Daily torpor in hamsters is cued by winterlike photoperiods and occurs coincident with the annual nadirs in body fat reserves and chronic leptin concentrations. To better understand the neural mechanisms underlying torpor, Siberian hamster pups were postnatally treated with saline or MSG to ablate arcuate nucleus neurons that likely possess leptin receptors. Body temperature was studied telemetrically in cold-acclimated (10 degrees C) male and female hamsters moved to a winterlike photoperiod (10:14-h light-dark cycle) (experiments 1 and 2) or that remained in a summerlike photoperiod (14:10-h light-dark cycle) (experiment 3). In experiment 1, even though other photoperiodic responses persisted, MSG-induced arcuate nucleus ablations prevented the photoperiod-dependent torpor observed in saline-treated Siberian hamsters. MSG-treated hamsters tended to possess greater fat reserves. To determine whether reductions in body fat would increase frequency of photoperiod-induced torpor after MSG treatment, hamsters underwent 2 wk of food restriction (70% of ad libitum) in experiment 2. Although food restriction did increase the frequency of torpor in both MSG- and saline-treated hamsters, it failed to normalize the proportion of MSG-treated hamsters undergoing photoperiod-dependent torpor. In experiment 3, postnatal MSG treatments reduced the proportion of hamsters entering 2DG-induced torpor-like hypothermia by approximately 50% compared with saline-treated hamsters (38 vs. 72%). In those MSG-treated hamsters that did become hypothermic, their minimum temperature during hypothermia was significantly greater than comparable saline-treated hamsters. We conclude that 1) arcuate nucleus mechanisms mediate photoperiod-induced torpor, 2) food-restriction-induced torpor may also be reduced by MSG treatments, and 3) arcuate nucleus neurons make an important, albeit partial, contribution to 2DG-induced torpor-like hypothermia.  相似文献   

14.
We examined the differential change in body composition in response to a gradual reduction in both environmental temperature and photoperiod to mimic seasonal fluctuations in the wild (summer–winter transition), from ambient to 5°C and 1:23 light:dark for 8 weeks. In contrast to acute cold exposure used in previous studies, cold-acclimated rats showed an initial increase in growth rate relative to normothermic controls, possibly due to cold-stimulated hyperphagia. In hamsters, maintenance of growth rate during initial cold exposure reflects the intrinsic high oxidative capacity, while subsequent cessation of growth is consistent with the preparation for hibernation. Cold-induced atrophy of skeletal muscles coincided with increased capacity for non-shivering thermogenesis (NST) associated with a greater mass of brown adipose tissue (BAT). Cardiac hypertrophy may compensate for an increase in total peripheral resistance and/or work load of heart in both species (40% and 20%, respectively), while hypertrophy of lung (20% and 40%) and diaphragm muscle (7% and 40%) was consistent with increased ventilation associated with a cold-induced increase in basal metabolic rate. Gonadal atrophy in hamsters (160%) may be an energy saving strategy during the non-reproductive season, while maintenance of other endocrine (thyroid, adrenal, pineal) gland masses reflects the continued importance of hormonal regulation of homeostasis. The interspecific differences appear to accommodate the increased demands of shivering thermogenesis (skeletal muscle hypertrophy) or NST (BAT, diaphragm) in rats and hamsters, respectively. Those systems representing cardiovascular and metabolic control completed their adaptation quickly (within 4-week cold acclimation), while the respiratory and reproductive systems continued to respond to a further 4-week exposure. This differential time course may reflect the relative strength of selection pressure on these systems for the process of cold acclimation.  相似文献   

15.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

16.
17.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

18.
We examined the effects of temperature and photoperiod on metabolic thermogenesis and the thermogenic characteristics of brown adipose tissue in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus), the dominant species of small mammals in the alpine meadow ecosystems on the Qinghai-Tibetan Plateau. Pikas and voles were acclimated in the following groups: (1) Long day – warm temperature (16L:8D, 23 °C), (2) Long day – cold temperature (16L:8D, 5 °C), (3) short day – warm temperature (8L:16D, 23 °C), and (4) short day – cold temperature (8L:16D, 5 °C). Both temperature and photoperiod were important environmental cues for changes in thermogenesis for both species. Low temperature and short photoperiod induced increases in metabolic rate, nonshivering thermogenesis (NST), mitochondrial protein contents of brown adipose tissue, and cytochrome C oxidase activity of brown adipose tissue mitochondria in both species. Plateau pikas were more sensitive to cold (79% of the total NST response) than to short photoperiod (21%), while root voles were more sensitive to short photoperiod (60% of the total NST response) than to cold (40%), although cold clearly enhanced thermogenesis. Their thermogenic characteristics correlated with their preferred habitats: plateau pikas are found mainly in more exposed microhabitats in open sunny meadow, while root voles live in more sheltered microhabitats in relatively closed shrub. Our results also showed that temperature and photoperiod combined induce thermogenic adjustments in both species in seasonal acclimatization in their alpine meadow macrohabitat. Accepted: 10 November 1998  相似文献   

19.
Exposure to low ambient temperatures (Ta) accelerates appearance of the winter phenotype in Siberian hamsters transferred from long to short day lengths. Because melatonin transduces the effects of day length on the neuroendocrine axis, the authors assessed whether low Ta promotes the transition to winterlike traits by accelerating the onset of increased nocturnal melatonin secretion or by enhancing responsiveness to melatonin in short day lengths. Male hamsters were transferred from 16L (16 h light/day) to 8L (8 h light/day) photoperiods and held at 5 degrees C or 22 degrees C. Locomotor activity was recorded continuously, and body mass, testis size, and pelage color were determined biweekly for 8 weeks. The duration of nocturnal locomotion (alpha), a reliable indicator of the duration of nocturnal melatonin secretion, lengthened significantly earlier in hamsters exposed to a Ta of 5 degrees C than 22 degrees C. Cold exposure increased the proportion of hamsters that were photoresponsive: gonadal regression in short days increased from 44% at 22 degrees C to 81% at 5 degrees C (p < 0.05); low Ta did not, however, accelerate testicular regression in animals that were photoresponsive. Nonphotoresponsive animals at 5 degrees C temporarily had longer alphas during the first 4 weeks in short days and significant decreases in body mass and testicular size that were reversed during the ensuing weeks when alpha decreased. In a 2nd experiment, pinealectomized male hamsters infused for 10 h/day with melatonin for 2 weeks had significantly lower body and testes masses when maintained at 5 degrees C but not 22 degrees C. Low-ambient temperature appears to accelerate the appearance of the winter phenotype primarily by increasing target tissue responsiveness to melatonin and to a lesser extent by augmenting the rate at which the duration of nocturnal melatonin secretion increases in short day lengths.  相似文献   

20.
Siberian hamsters (Phodopus sungorous sungorous) decrease their food intake when exposed to short (“winter-like”) photoperiods. The cause of this naturally-occurring hypophagia is unknown, but it may be due to a heightened sensitivity to the factors that normally terminate food intake in long photoperiods, such as the putative satiety peptides. The purpose of the present investigation was to test whether there would be an enhanced sensitivity to the inhibitory effects of some of these peptides on food intake in short relative to long days. Ad lib-fed, adult female Siberian hamsters were housed in a long photoperiod (LD 14:10) and injected with bombesin, glucagon, cholecystokinin octapeptide (CCK-8) and calcitonin (CT). Food intake was monitored 1, 2, 4, 6, and 24 hr post-injection. Bombesin and glucagon had no effect on food intake in long day-housed hamsters. CCK-8 and CT inhibited food intake; however, CCK-8 did so without any apparent behavioral disruption, while CT produced a marked and prolonged depression of behavior. After 10 weeks of exposure to a short photoperiod (LD 8:16) the hamsters were tested again. The previously ineffective dose of bombesin greatly inhibited food intake following short photoperiod exposure. In addition, an increased inhibition of food intake by CCK-8 was also found. In contrast, glucagon did not decrease food intake and CT still produced its non-specific, behaviorally disruptive effects. To our knowledge, this is the first demonstration that the effectiveness of a putative satiety peptide can be dependent upon a change in the photoperiod. This heightened responsiveness of short photoperiod-exposed Siberian hamsters to the inhibitory effects of bombesin and cholecystokinin may account for the reduction in food intake that accompanies short day exposure in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号