首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sp1和Sp3介导的转录调控   总被引:1,自引:0,他引:1  
基本转录因子Sp1和Sp3对转录调控区GC盒有很强的亲和力,参与几乎所有细胞功能,包括细胞增殖、凋亡、分化和新生物的转化.但在同一细胞中Sp1和Sp3对不同基因的作用并不相同,二者对基因特异性的转录调控是Sp1和Sp3研究领域的重要问题.近年来发现,Sp1和Sp3自身表达水平、结合的靶序列、磷酸化、糖基化等翻译后修饰,其他蛋白质的结合以及染色质结构与修饰等方面均可影响Sp1和Sp3的转录活性.本文从Sp1和Sp3蛋白参与转录调节的机制以及影响其基因特异性转录活性的诸方面因素这两大侧面,介绍了近年来的最新进展.  相似文献   

3.
4.
Zhang S  Cheng J  Qin YX 《PloS one》2012,7(6):e38343
Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm(2), suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
E2F target genes: unraveling the biology   总被引:23,自引:0,他引:23  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号