首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of etythrocyte ghosts with carbonylcyanide m-chlorophenyl-hydrazone (CCCP) plus Ca-2+ resulted in inactivation of the Ca-2+ -stimulated ATPase activity. Omission of Ca-2+ or lowering of the temperature below 25 degrees C eliminated the inhibitory effect, as also did the presence of ATP during the incubation. On the other hand, the addition of beta-mercaptoethanol did not influence the Ca-2+ -dependent inhibition by CCCP. Compared with the level of CCCP which uncouples oxidative phosphorylation, a rather high level (0.5 mM) of CCCP was required to inhibit the ATPase activity in ghosts. However, once the inhibition had been accomplished, almost all of the CCCP could be removed from the ghost membrane by washing with a Ca-2+ -containing solution, without affecting the inhibition of ATPase. If ethylene-glycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid was included in the washing medium, the inhibition of ATPase was nearly completely reversed by washing. The results indicate that only the Ca-2+ -stimulated, Mg-2+ -ATPase was inhibited by 0.5 mM CCCP, while the remaining components of the ATPase activity were slightly inhibited by higher levels of the uncoupler. Low levels of CCCP (0.1 mM) stimulated the Mg-2+ -ATPase slightly. CCCP was much more specific for the Ca-2+ -stimulated ATPases than N-(1-naphthyl)maleimide, an unusually effective sulfhydryl reagent, and the requirement of Ca-2+ for inactivation was also quite specific.  相似文献   

2.
1. ATP stimulated the p-nitrophenyl phosphatase activity of placental plasma membranes, with an increase in activity of approximately 100% at 5 mM ATP. The stimulation was not dependent on the presence of Mg-2-+. 2. The K-m for p-nitrophenyl phosphate was not changed by the presence of 5 mM ATP. 3. ATP hydrolysis by the plasma membrane preparation under the same assay conditions as for alkaline phosphatase was not influenced by the presence of 5 mM p-nitrophenyl phosphate. 4. Extraction of the plasma membrane preparation with n-butanol abolished the stimulatory effect of ATP, as well as Ca-2-+-activated ATPase activity.  相似文献   

3.
Purified troponin (Tn), the complex of the Ca-2+ binding subunit (TnC), the inhibitory subunit (TnI), and the tropomyosin binding subunit (TnT) binds 4 mol of Ca-2+ per mol. Two sites bind Ca-2+ with a binding constant of 5 times 10-8 M- minus 1, and two with a binding constant of 5 times 10-6 M- minus 1. In the presence of 2 mM MgCl2 the binding to four sites can be characterized with a single affinity constant of 5 times 10-6 M- minus 1. Purified TnC also binds 4 mol of Ca-2+ per mol; two sites have a binding constant of 2 times 10-7 M- minus 1 and two have one of 2 times 10-5 M- minus 1. In the presence of 2 mM MgCl2 the binding constant of the sites of higher affinity is reduced to 2 times 10-6 M- minus 1, while Ca-2+ binding to the sites of lower affinity is unaffected. Assuming competition between Mg-2+ and Ca-2+ for the high affinity sites on TnC and Tn, the changes in Ca-2+ binding can be accounted for with KMg values of 5 times 10-3 M- minus 1 and 5 times 10-4 M- minus 1, respectively. Tn and TnC bind 4 mol of Mg-2+ per mol in the absence of Cs-2+. The fact that at [Ca-2+] similar to 10- minus 5 M four Ca-2+ and only two Mg-2+ are bound per mol of TnC in the presence of 2 mM Mg-2+ further supports the view that there is direct competition between Mg-2+ and Ca-2+ for the high affinity Ca-2+ binding sites on TnC and Tn. These results then suggest that Tn and TnC contain six divalent cation binding sites: two high affinity Ca-2+ binding sites that also bind Mg-2+ competitively (Ca-2+-Mg-2+ sites); two sites with lower affinity for Ca-2+ that do not bind Mg-2+ (Ca-2+-specific sites); and two sites that bind Mg-2+ but not Ca-2+ (Mg-2+-specific sites). The complex of TnC and TnI (1:1 molar ratio) has the same binding properties as Tn, suggesting a conformational change in TnC upon interaction with TnI. Studies on myofibrillar ATPase activity as a function of free Ca-2+ concentration at two different free Mg-2+ concentrations suggest that full activation by Ca-2+ occurs only upon binding of Ca-2+ to the two Ca-2+-specific binding sites in Tn but does not require binding of Ca-2+ to the Ca-2+-Mg-2+ sites.  相似文献   

4.
1. Haemoglobin-free erythrocyte ghosts were prepared in 40 imosM bicarbonate buffer, pH 7.4, containing 1 mM EDTA (40 imosM/l mM EDTA). The ghost preparation was highly permeable on preparation but partially resealed on incubation in media containing Ca-2+. 2. A partially purified preparation of phospholipase C from Clostridum welchii caused an increase in observed Mg-2+-ATPase activity, reflecting a change in the permeability of the ghost to substrate. The phospholipase did not decrease Mg-2+-ATPase even at the highest levels tested. Mg-2+-ATPase activity could therefore be used as a permeability indicatior in these experiments. 3. Both (Ca-2+, Mg-2+)-ATPase activities of the ghosts were progressively lost as a result of the phospholipid hydrolysis induced by phospholipase C. 4. When a haemolysin in the commercial preparation was destroyed by heat-treatment, deactivation of the (Ca-2+, Mg-2+)-ATPase and (Na+, K+, Mg-2+)-ATPases were still observed but permeability changes were greatly reduced. 5. The products of phospholipase action were not inhibitory to the Ca-2+, Mg-2+)-ATPase. 6. Lysolecithin brought about a reactivation of the (Ca-2+, Mg-2+)-ATPase which was superimposed upon permeability changes in the preparation. 7. Reactivation of the (Ca-2+, Mg-2+)-ATPase was brought about by a nonlytic, mixed lipid preparation without significant effect upon permeability. 8. Human erythrocyte (Ca-2+, Mg-2+)-ATPase therefore appears to be an enzyme which responds to perturbation of the lipid environment in the membrane and is a "lipid-dependant" enzyme.  相似文献   

5.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

6.
The kinetic properties of type-II ATP diphosphohydrolase are described in this work. The enzyme preparation from the inner layer of the bovine aorta, mostly composed of smooth muscle cells, shows an optimum at pH 7.5. It catalyzes the hydrolysis of tri- and diphosphonucleosides and it requires either Ca2+ or Mg2+ for activity. It is insensitive to ouabain (3 mM), an inhibitor of Na+/K(+)-ATPase, to tetramisole (5 mM), an inhibitor of alkaline phosphatase, and to Ap5A (100 microM), an inhibitor of adenylate kinase. In contrast, sodium azide (10 mM), a known inhibitor for ATPDases and mitochondrial ATPase, is an effective inhibitor. Mercuric chloride (10 microM) and 5'-p-fluorosulfonylbenzoyl adenosine are also powerful inhibitors, both with ATP and ADP as substrates. The inhibition patterns are similar for ATP and DP, thereby, supporting the concept of a common catalytic site for these substrates. Apparent Km and Vmax, obtained with ATP as the substrate, were evaluated at 23 +/- 3 microM and 1.09 mumol Pi/min per mg protein, respectively. The kinetic properties of this enzyme and its localization as an ectoenzyme on bovine aorta smooth muscle cells suggest that it may play a major role in regulating the relative concentrations of extracellular nucleotides in blood vessels.  相似文献   

7.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

8.
Studies were carried out to elucidate the nature of biphasic ATP hydrolysis by myosin at low temperature. 1. The rate of ATP splitting decreased sharply at 3--5 min after initiation of the reaction below a critical temperature (25 degrees and 30 degrees in the presence of Ca-2+ and EDTA, respectively). On the other hand, Mg-2+-ATPase [ED 3.6.1.3] did not exhibit such biphasic kinetics. 2. The Arrhenius plot of the second phase of the reaction after the rate transition gave a straight line whether the temperature of assay was above or below the critical one, giving 5.7 kcal/mole as the activation energy of Da-2+-ATPase showed features similar to those of Ca-2+-ATPase. 3. Michaelis constants for the two phases at 8 degrees were also different. In addition, the first phase of EDTA-ATPase was shown to have two different constants, depending on ATP concentration. 4. The profiles of the dependence of ATPase activity on KCl concentration were essentially the same for both phases, while bending of the time curve was scarecly observed obove pH 8 for Ca-2+-ATPase or at pH 6 for EDTA-ATPase. 5. 2, 4-Dinitrophenol abolished the phase transition for Ca-2+-ATPase and EDTA-ATPase, and heat treatment also minimized the transition for the former.  相似文献   

9.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

10.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Phosphorylated intermediates in the hydrolysis of ATP by human red cell membrane adenosine triphosphatases have been detected using [gamma-32-P]ATP. Intermediates formed in the presence of Mg2+ alone (MG-2+-ATPase), Mg-2+ and Na+ ((Na+,K+)-ATPase), and Mg-2+ and Ca-2+ (Ca-2+-ATPase) were separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate at pH 2.4, indicating that these three ATPases are different molecular species. There are roughly 100, 150, and 400 copies per cell, respectively, of the three ATPases.  相似文献   

12.
Fractions composed primarily of cells (Fraction I), membrane fragments (Fraction II) and matrix vesicles (Fraction III) were isolated from chick epiphyseal cartilage. The characteristics of the alkaline phosphatase (EC 3.1.3.1), pyrophosphatase (EC 3.6.1.1) and ATPase (EC 3.6.1.3) activities in the matrix vesicle fraction were studied in detail. Mg-2-+ was not absolutely essential to any of the activities, but at low levels was stimulatory in all cases. Higher concentrations inhibited both pyrophosphatase and ATPase activities. Both the stimulatory and inhibitory effects were pH-dependent. Ca-2-+ stimulated all activities weakly in the absence of Mg-2-+. However, when Mg-2-+ was present, Ca-2-+ was slightly inhibitory. Thus, none of the activities appear to have a requirement for Ca-2-+, and hence would not seem to be involved with active Ca-2-+ transport in the typical manner. The distribution of alkaline phosphatase, pyrophosphatase, and Mg-2-+ ATPase activities among the various cartilage fractions was identical, and concentrated primarily in the matrix vesicles. Conversely, the highest level of (Na-+ + K-+)-ATPase activity was found in the cell fraction. All activites showed nearly identical sensitivities to levamisole (4 - 10-3 M) which caused nearly complete inhibition of alkaline phosphatase and pyrophosphatase. About 10-15% of the ATPase activity was levamisole-insensitive. The data are consistent with the concept that the Mg-2-+-ATPase and pyrophosphatase activities of matrix vesicles stem from one enzyme, namely, alkaline phosphatase.  相似文献   

13.
In this study, we have identified the E-NTPDase family members and ecto-5'-nucleotidase/CD73 in rat heart left ventricle. Moreover, we characterize the biochemical properties and enzyme activities from synaptosomes of the nerve terminal endings of heart left ventricle. We observe divalent cation-dependent enzymes that presented optimum pH of 8.0 for ATP and ADP hydrolysis, and 9.5 for AMP hydrolysis. The apparent K(M) values are 40 microM, 90 microM and 39 microM and apparent V(max) values are 537, 219 and 111 nmol Pi released/min/mg of protein for ATP, ADP and AMP hydrolysis, respectively. Ouabain, orthovanadate, NEM, lanthanum and levamisole do not affect ATP and ADP hydrolysis in rat cardiac synaptosomes. Oligomycin (2 microg/mL) and sodium azide (0.1 mM), both mitochondrial ATPase inhibitors, inhibit only the ATP hydrolysis. High concentrations of sodium azide and gadolinium chloride show an inhibition on both, ATP and ADP hydrolysis. Suramin inhibit more strongly ATP hydrolysis than ADP hydrolysis whereas Evans blue almost abolish both hydrolysis. AMP hydrolysis is not affected by levamisole and tetramisole, whereas 0.1 mM ammonium molybdate practically abolish the ecto-5'-nucleotidase activity. RT-PCR analysis from left ventricle tissue demonstrate different levels of expression of Entpd1 (Cd39), Entpd2 (Cd39L1), Entpd3 (Cd39L3), Entpd5 (Cd39L4) Entpd6, (Cd39L2) and 5'-NT/CD73. By quantitative real-time PCR we identify the Entpd2 as the enzyme with the highest expression in rat left ventricle. Our results contribute to the understanding about the control of the extracellular nucleotide levels in and cardiac system.  相似文献   

14.
Characterization of the plasma membrane ATPase of Candida tropicalis   总被引:1,自引:0,他引:1  
1) Plasma membrane vesicles from Candida tropicalis were isolated from protoplasts by differential centrifugation and purified in a continuous sucrose gradient. 2) The plasma membrane bound ATPase was characterized. It is highly specific for ATP and requires Mg2+. It is stimulated by K+, Na+ and NH4+. Lineweaver-Burk plots for ATPase activity are linear with a Vmax of 4.2 mumoles of ATP hydrolyzed min-1.mg-1 protein and a Km for ATP of 0.76 mM. The ATPase activity is inhibited competitively by ADP with a Ki of 1.7 mM and non competitively by vanadate with a Ki of 3 microM. The activity is unaffected by oligomycin or azide but is sensitive to DCCD.  相似文献   

15.
Ca2+ transport activity in synaptosomal membranes has been identified as having two major components: Ca2+-stimulated ATP hydrolysis and ATP-dependent CA2+ uptake. Both processes exhibit similar affinities for Ca2+ and operate maximally under identical buffer conditions. Subcellular fractionation studies revealed the Ca2+/Mg2+ ATPase and ATP-dependent CA2+ uptake activities to be highest in synaptic plasma membrane fractions 1 and 2, with lesser activity in synaptic vesicles and mitochondria. Progressive treatment with Triton X-100 activated, then decreased Ca2+/Mg2+ ATPase, Mg2+ ATPase and Ca2+ ATPase. ATP-dependent Ca2+ uptake was progressively decreased by similar treatment with Triton X-100. These studies illustrate that Ca2+ ATPase and ATP-dependent Ca2+ uptake may provide two important mechanisms for buffering of cytosolic Ca2+ at the nerve terminal. These systems may function to rapidly sequester cytosolic Ca2+ following a rise during depolarization and then extrude Ca2+ from the terminal against a concentration gradient. This regulation of cytosolic Ca2+, represented by two processes of the type seen in other plasma membranes, may play critical roles in calcium homeostasis in nerve cells.Footnote: Portions of this research were submitted by K. M. Garrett in partial fulfillment of requirements for the Doctor of Philosophy Degree in Pharmacology at the University of Texas Health Science Center.  相似文献   

16.
The purpose of this study was to characterize the interrelationship between free calcium (Ca2+) and magnesium (Mg2+) in the Ca2+ ATPase enzyme cycle of kidney membranes. Experiments were performed with basolateral membranes from rat renal cortex and microdissected proximal and distal tubules from mice. Results were similar in the three types of preparations. We first investigated the effect of ATP concentration on Ca2(+)- and Mg2(+)-dependent ATP hydrolysis. With 0.2 microM Ca2+, the enzyme activity, as a function of ATP concentration, showed two saturable components: a high affinity component with a Km of 33 microM ATP and a low affinity component with a Km of 0.63 mM ATP. These components may represent either two distinct sites of ATP binding or two forms of the same site. For the sake of simplicity, it was assumed that the two components correspond to a high affinity and a low affinity substrate site. At the high affinity site (ATP = 50 microM), the Ca2+ dependence of ATP hydrolysis followed a single Michaelis-Menten kinetics with Km for Ca2+ of 0.08 microM. The addition of 1 mM Mg2+ resulted in a relatively constant increase in ATP hydrolysis at all Ca2+ concentrations, indicating that the effects of the two cations were additive. With high ATP concentration (ATP = 3 mM), Ca2+ also induced an ATP hydrolysis according to a saturable process, with a Km for Ca2+ of 0.2 microM. In contrast with what occurred with low concentrations of ATP, addition of millimolar Mg2+ completely curtailed the sensitivity of the enzyme to Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
An ATP-hydrolysing activity on the external surface of intact synaptosomes from chicken forebrain has been investigated. The observed ATPase activity was not due to leakage of the intracellular ATPase activities, of artefacts resulting from breakage of the nerve endings during the incubation and isolation periods, or to possible contamination by other subcellular particles. Disruption of the synaptosomes resulted in an approximately 2.5-fold increase of the basal, Mg2+-dependent ATPase activity, suggesting that the plasma membrane was acting as permeability barrier to the substrate. ATP hydrolysis was maximal (0.8 mumol Pi/min/mg protein) at pH 8.2 in a medium containing either Mg2+ or Ca2+ ions. Ouabain (0.2 mM) and oligomycin (2 micrograms/mg protein) had no appreciable effect on this ATPase activity. Kinetic studies of the enzyme revealed an apparent Km value of ATP of approximately 4 x 10(-5) M. These data are consistent with the view that the observed ATP hydrolysis was being catalysed by an ectoenzyme, i.e., an enzyme in the plasma membrane of the nerve endings with its active site facing the external medium. The rapid hydrolysis of the released ATP is a suspected function for this ecto-ATPase.  相似文献   

18.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

19.
The gastric [H,K]ATPase:H+/ATP stoichiometry   总被引:2,自引:0,他引:2  
An H+/ATP ratio of 2 for H+ transport was determined from initial rate measurements at pH 6.1 in a purified gastric microsomal fraction containing the [H,K]ATPase. This ratio was independent of external KCl, though the apparent K0.5 for ATP was increased from 10.78 +/- 0.51 (n = 3) to 64.6 +/- 11.9 (n = 3) microM ATP and from 5.13 +/- 0.64 (n = 3) to 65.2 +/- 0.64 (n = 3) microM ATP for H+ transport and the K+-stimulated ATPase, respectively, as K+external was increased from 12 to 150 mM. The H+/ATP ratio was also relatively independent of ATP concentration. Maximum initial rates obtained in KCl-equilibrated vesicles were independent of added valinomycin, though net H+ transport was increased 29.3 +/- 1.03% (n = 6) by the addition of ionophore. Maximum net H+ transport in this vesicle preparation was 185 +/- 2.1 (n = 14) nmol mg-1 of protein. Initial rate measurements of ATPase represent a burst of K+-dependent activity of approximately 10-15 s duration. The H+/ATP stoichiometry was calculated based on the K+-stimulated component of hydrolysis. Under most conditions, the Mg2+-dependent component of hydrolysis was less than 10% of the (Mg2+ + K+) component of hydrolysis.  相似文献   

20.
Echarte MM  Rossi RC  Rossi JP 《Biochemistry》2007,46(4):1034-1041
The plasma membrane calcium ATPase (PMCA) reacts with ATP to form acid-stable phosphorylated intermediates (EP) that can be measured using (gamma-32P)ATP. However, the steady-state level of EP at [ATP] higher than 100 microM has not yet been studied due to methodological problems. Using a microscale method and a purified preparation of PMCA from human red blood cells, we measured the steady-state concentration of EP as a function of [ATP] up to 2 mM at different concentrations of Mg2+, both at 4 and 25 degrees C. We have measured the Ca2+-ATPase activity (v) under the same conditions as those used for phosphorylation experiments. While the curves of ATPase activity vs [ATP] were well described by the Michaelis-Menten equation, the corresponding curves of EP required more complex fitting equations, exhibiting at least a high- and a low-affinity component. Mg2+ increases the apparent affinity for ATP of this latter component, but it shows no significant effect on its high-affinity one or on the Ca2+-ATPase activity. We calculated the turnover of EP (k(pEP)) as the ratio v/EP. At 1 mM Mg2+, k(pEP) increases hyperbolically with [ATP], while at 8 microM Mg2+, it exhibits a behavior that cannot be explained by the currently accepted mechanism for ATP hydrolysis. These results, together with measurements of the rate of dephosphorylation at 4 degrees C, suggest that ATP is acting in additional steps involving the interconversion of phosphorylated intermediates during the hydrolysis of the nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号