首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Screening of a rat liver cDNA expression library constructed in the vector lambda gt11 with an affinity purified antiserum to rat phenylalanine hydroxylase has resulted in the isolation of two clones which contain the complete coding region (1362 base pairs) of phenylalanine hydroxylase and the entire 3'-untranslated region (562 base pairs). From the nucleotide sequence we deduced the amino acid sequence of the enzyme. The molecular weight is 51,632 (452 amino acids). The rat enzyme is highly homologous to human phenylalanine hydroxylase. The two proteins differ in only 36 amino acids (92% homology), many of which are conservative changes. A dot matrix computer program was used to analyze regions of homology with the amino acid sequence of rat tyrosine hydroxylase. Considerable homology was detected from amino acid 140 in the rat enzyme to the C terminus, but little or no homology was apparent in the N-terminal region. The cDNA clone was used to determine the levels of phenylalanine hydroxylase mRNA in rat tissues using RNA blot hybridization. Two mRNA species were detected, with approximate lengths of 2,000 and 2,400 nucleotides, which appear to derive from use of alternate polyadenylation signals. No difference in mRNA size was found in rats which have different phenylalanine hydroxylase alleles. The kidney was found to contain about 10% of the mRNA found in the liver, and no phenylalanine hydroxylase mRNA was detected in rat brain. Reuber H4 hepatoma cells were also analyzed for phenylalanine hydroxylase mRNA. The parental cells contained mRNA species of the same sizes as in rat liver. Incubation in 10(-6) M hydrocortisone for 24 h resulted in an 18-fold increase in the mRNA level. Mutant hepatoma cells which express very little phenylalanine hydroxylase contained less than 5% of the parental mRNA, but the gene still responded to hydrocortisone.  相似文献   

2.
Adrenodoxin is an iron-sulfur protein serving as an electron transport intermediate for two mitochondrial steroidogenic cytochromes P450. We have cloned and sequenced three human adrenal adrenodoxin cDNAs. The longest 5'-untranslated region was 131 bases long, and the coding sequences, identical in all three clones, predict a preprotein of 180 amino acids. The 3'-untranslated regions were 235, 596, and 776 bases long due to the presence of alternate polyadenylation sites. RNA transfer blots showed multiple size species of adrenodoxin mRNA consistent with finding multiple polyadenylation sites. Similar sized cross-hybridizing RNA species are found abundantly in the adrenal and testis and to a lesser degree in RNA from human fetal brain, spleen, placenta, kidney, liver, and intestine, as well as in cultured fibroblasts, suggesting the same or a very similar iron-sulfur protein is found in mitochondria of nonsteroidogenic tissues. JEG-3 cells, a transformed progesterone-producing line of trophoblastic origin, accumulate mRNAs for cytochrome P450scc (the mitochondrial cholesterol side-chain cleavage enzyme), adrenodoxin, and the fos oncogene when stimulated with 8-bromo-cyclic AMP. Addition of actinomycin D to such cultures blocked cAMP-induced accumulation of mRNAs for cytochrome P450scc and adrenodoxin. Addition of cycloheximide or puromycin to such cultures substantially reduced basal levels and markedly attenuated the cAMP-induced accumulation of cytochrome P450scc mRNA, but augmented the accumulation of adrenodoxin and fos mRNAs in additive and multiplicative fashions, respectively. These data indicate that the cAMP-induced synthesis of the steroidogenic machinery is not wholly dependent on cycloheximide-sensitive protein mediators.  相似文献   

3.
The tissue distribution and the structural heterogeneity of the rat angiotensinogen mRNA have been investigated with the aid of a previously cloned cDNA as well as a genomic DNA for rat angiotensinogen as analytical probes. The angiotensinogen mRNA is expressed not only in the liver but also in various tissues including the brain, kidney, adrenal gland, ovary, and lung. The relative levels of the mRNA in the above tissues have been estimated to be 3-4, 20-30 (for the next three tissues), and around 100 times less than that in the liver, respectively. The mRNAs in both hepatic and extrahepatic tissues are encoded by a single gene in the rat genome. At least four different size classes of the angiotensinogen mRNA that start with a single 5' terminus and differ only in the lengths of their 3'-untranslated regions have been identified, and these multiple mRNA species are most likely generated by using the polyadenylation signals AAUAAA and AUUAAA found 10-30 nucleotides upstream from the four polyadenylation sites. Because the structures of these multiple mRNA species do not vary among the tissues of the liver, brain, and kidney, angiotensinogen synthesized locally is structurally identical to that produced in the liver and may have some biological roles independent of the circulating angiotensinogen, mainly derived from the liver. In addition, the sequence of the 5'-flanking region of the angiotensinogen gene has been determined, and some features common to other steroid hormone-responsive genes have been discussed.  相似文献   

4.
5.
NAD(P)H:menadione oxidoreductase (NMOR1) is a flavoprotein that catalyzes the two-electron reduction of various redox dyes and quinones. It has been proposed that this enzyme may have a protective effect against cancer caused by quinones and their metabolic precursors. We show that tetrachlorodibenzo-p-dioxin (TCDD) treatment of the human hepatoblastoma cell line Hep-G2 produces a 5-fold induction of NMOR activity. Several overlapping human NMOR1 cDNAs were isolated from a human liver lambda gt 11 expression library, and their composite sequence corresponds to an mRNA of 2448 nucleotides containing a continuous open reading frame encoding a protein of 274 residues (molecular weight, 30,880). The corresponding human NMOR1 mRNA has an unusually long 3'-untranslated region (1679 base pairs) with four potential polyadenylation signals (I-IV) at positions 986, 1460, 1838, and 2419 and a single copy of human Alu repetitive sequence between polyadenylation sites II and III. Southern blot analysis of human genomic DNA suggests the presence of a single NMOR1 gene approximately 10 kilobases (KB) in length. The use of three of the aforementioned polyadenylation signals is likely to account for the three different species (2.7, 1.7, and 1.2 kb) of mRNA hybridizing to NMOR1 cDNA in Hep-G2 cells. Indeed several partial cDNA clones were isolated that corresponded to the mRNA derived by use of the proximal polyadenylation signal. Interestingly, the longest (2.7 kb) mRNA species was induced severalfold by TCDD, whereas the other two mRNAs (1.7 and 1.2 kb) were induced to a much lesser extent by TCDD treatment. The human NMOR1 cDNA and protein are 83 and 85% similar to rat liver cytosolic NMOR1 cDNA and protein, respectively. Southern analysis of DNA from 54 human x mouse and 39 human x hamster somatic cell hybrids shows that the NMOR1 gene resides on human chromosome 16.  相似文献   

6.
7.
We have isolated the CD59 gene from human genomic libraries. The gene is distributed over more than 27 x 10(3) base-pairs and consists of one 5'-untranslated exon and three coding exons. The gene structure is similar to that of mouse Ly-6 with the exception of the larger size of CD59 introns. Northern blot analysis using six different probes located in the 3'-region of the gene shows that more than four different CD59 mRNA molecules are generated by alternative polyadenylation. Three of these polyadenylation sites were predicted from previously published cDNA sequences. We have isolated a fourth from Jurkat poly(A)+ RNA by the procedure of rapid amplification of cDNA ends. Alternative polyadenylation may be due to the RNA secondary structure around the typical polyadenylation signal, AAUAAA.  相似文献   

8.
Molecular cloning of a non-isopeptide-selective human endothelin receptor.   总被引:21,自引:0,他引:21  
We isolated several complementary DNA (cDNA) clones encoding a non-isopeptide-selective human endothelin receptor (ETBR) from a human placenta cDNA library. The clones, different in the length of their 3'-untranslated regions, encoded the same 442-amino acid protein with a transmembrane topology similar to that of other G protein-coupled receptors. The rank order of the binding of ET isopeptides (ET-1, ET-2 and ET-3) to the receptor expressed in COS-7 cells was ET-1 = ET-2 = ET-3. Northern blot analysis identified three mRNA species, 4.3 kb, 2.7 kb and 1.7 kb in size, probably generated by their use of alternative polyadenylation sites. These mRNAs were expressed in a wide variety of human tissues, at the highest level in the brain and at a significant level in cultured endothelial cells.  相似文献   

9.
A cDNA clone for cytosolic nucleoside diphosphate (NDP) kinase was isolated from a cDNA library of rat skeletal muscle using synthetic oligonucleotides as probes. The clone constitutes a 621-base pair cDNA sequence including the 456-base pair coding region and 137-base pair 3'-untranslated one with polyadenylation site. The complete primary structure of NDP kinase was deduced from the coding sequence. An NH2-terminal amino acid sequence analysis suggested that the translated enzyme protein suffered proteolytic cleavage followed by modification at the alpha-NH2 group of the newly produced NH2-terminal amino acid residue. Taking this into account, it was tentatively concluded that the mature NDP kinase consists of 147 amino acid residues with a molecular weight of 16,724. Northern blot hybridization analysis showed that NDP kinase mRNA could be detected in total RNA fractions of brain, spleen, heart, lung, liver, kidney, testis as well as skeletal muscle, and that there was no difference in the size of mRNAs from these tissues. Tissue distribution of the mRNA nearly paralleled those of protein moiety and activity of the enzyme.  相似文献   

10.
11.
12.
13.
An adult human liver cDNA library constructed in expression vector, bacteriophage lambda gt11, was screened with polyclonal antibody directed against human T4-binding globulin (TBG). TBG cDNA cloned in the present study was 944 nucleotides in length. It contained approximately 70% of the coding region and complete 3'-untranslated region. When the sequence was compared with that of TBG cDNA recently cloned by I. L. Flint, T. J. Bailey, T. A., Gustafson, B. E. Markham, and E. Morkin, the 3'-untranslated region of our cDNA was 231 nucleotides shorter than their cDNA. These results indicated that two TBG mRNAs with different length of 3'-untranslated regions may exist in human liver. Indeed, Northern blot analysis revealed that two TBG mRNAs differing in the length approximately 200 base pairs were present in normal human liver as well as in human hepatoma cell line (HepG2). It was demonstrated that this size difference was due to the length of 3'-untranslated region by hybridization with a probe specific to the longer 3'-end. Together with the sequence data, it was suggested that these two TBG mRNA species may be produced by alternative processing and polyadenylation at two different sites.  相似文献   

14.
Cloning, expression and sequence homologies of cDNA for human gamma enolase   总被引:6,自引:0,他引:6  
D Oliva  G Barba  G Barbieri  A Giallongo  S Feo 《Gene》1989,79(2):355-360
The nucleotide sequence of the human gamma-enolase mRNA was determined from recombinant cDNA clones. The sequence spans 2273 bp and includes the complete coding region of 1299 bp, a 5'-noncoding region of 74 bp and a 897-bp-long 3'-noncoding region containing a variant polyadenylation signal (ATTAAA). The deduced amino acid (aa) sequence is 433 aa long and shows a 97% similarity with rat gamma-enolase. Both the 5'- and 3'-untranslated regions are similar (82% and 68%, respectively) to the analogous regions of the rat gamma-enolase gene, suggesting that a strong selective pressure operates on noncoding segments of gamma-enolase mRNAs. The size of the gamma-enolase mRNA expressed in human brain is 2.4 kb. A crosshybridizing 1.5-kb message is detected in human skeletal muscle which may be derived from the beta-enolase-coding gene.  相似文献   

15.
Molecular cloning and expression of human bile acid beta-glucosidase   总被引:1,自引:0,他引:1  
A novel microsomal beta-glucosidase was recently purified and characterized from human liver that catalyzes the hydrolysis of bile acid 3-O-glucosides as endogenous compounds. The primary structure of this bile acid beta-glucosidase was deduced by cDNA cloning on the basis of the amino acid sequences of peptides obtained from the purified enzyme by proteinase digestion. The isolated cDNA comprises 3639 base pairs containing 524 nucleotides of 5'-untranslated and 334 nucleotides of 3'-untranslated sequences including the poly(A) tail. The open reading frame predicts a 927-amino acid protein with a calculated M(r) of 104,648 containing one putative transmembrane domain. Data base searches revealed no homology with any known glycosyl hydrolase or other functionally identified protein. The cDNA sequence was found with significant identity in the human chromosome 9 clone RP11-112J3 of the human genome project. The recombinant enzyme was expressed in a tagged form in COS-7 cells where it displayed bile acid beta-glucosidase activity. Northern blot analysis of various human tissues revealed high levels of expression of the bile acid beta-glucosidase mRNA (3.6-kilobase message) in brain, heart, skeletal muscle, kidney, and placenta and lower levels of expression in the liver and other organs.  相似文献   

16.
17.
18.
We have isolated the rat gene encoding isoform 3 of the plasma membrane Ca(2+)-ATPase (PMCA3) and have determined its exon/intron organization. The PMCA3 gene contains 24 exons and spans approximately 70 kilobases. In addition, we have analyzed the splicing and polyadenylation patterns leading to the production of an alternative 4.5-kilobase (PMCA3) skeletal muscle mRNA that differs from the previously characterized 7.5-kilobase brain mRNA (Greeb, J., and Shull, G. E. (1989) J. Biol. Chem. 264, 18569-18576). cDNA cloning, Northern blot hybridization, and polymerase chain reaction analyses of the 4.5-kilobase mRNA demonstrate (i) the inclusion of a novel 68-nucleotide exon (exon 22) that is specific for skeletal muscle and significantly alters the calmodulin-binding domain and (ii) the utilization of an alternative polyadenylation site following exon 23 which eliminates the last coding exon (exon 24) and 3'-untranslated sequence of the 7.5-kilobase mRNA. We have also identified a 42-nucleotide exon (exon 8) that is included in the skeletal muscle PMCA3 mRNAs, but may be either included or excluded in the brain mRNAs. Exon 8 is inserted immediately before the sequence encoding a putative phospholipid binding domain and thus may alter regulatory interactions of the enzyme with acidic phospholipids.  相似文献   

19.
20.
A full-length cDNA clone encoding human beta-ureidopropionase was isolated. A 1152-nucleotide open reading frame which corresponds to a protein of 384 amino acids with a calculated molecular weight of 43? omitted?158 Da, surrounded by a 5'-untranslated region of 61 nucleotides and a 3'-untranslated region of 277 nucleotides was identified. The protein showed 91% similarity with the translation product of the rat beta-ureidopropionase cDNA. Expression of the human cDNA in an Escherichia coli and eukaryotic COS-7 expression system revealed a very high beta-ureidopropionase enzymatic activity, thus confirming the identity of the cDNA. Since human EST libraries from brain, liver, kidney and heart contained partial beta-ureidopropionase cDNAs, the enzyme seems to be expressed in these tissues, in agreement with the expression profile of this enzyme in rat. Using the human cDNA as a probe a genomic P1 clone could be isolated containing the complete human beta-ureidopropionase gene. The gene consist of 11 exons spanning approximately 20 kB of genomic DNA. Fluorescence in situ hydridization localized the human beta-ureidopropionase gene to 22q11.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号