首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared spectroscopy has been used to study the stable and metastable forms of a range of cerebrosides in aqueous systems. The spectra provide evidence for different degrees of inter- and intra-molecular hydrogen bonding, involving principally the amide group, in these different states. A comparison has been made with the spectra of a cerebroside containing an alpha-hydroxyl group in the fatty acyl chain. This cerebroside does not show metastability and its hydrogen bonding characteristics are shown to be different.  相似文献   

2.
We have used a computer-controlled differential scanning calorimeter to determine the phases present in mixtures of the brain galactocerebrosides with other representative brain lipids. There are two types of brain galactocerebroside, those which possess an alpha-hydroxy substituent on the acyl chain (HFA) and those that do not (NFA). In the liquid crystalline state both cerebrosides were miscible with all the lipids studied, but in the gel state they were immiscible with cholesterol and the brain phosphatidylcholines. However, cholesterol mixtures in which the cholesterol mole fraction exceeded one third formed homogeneous metastable gel states on cooling from above the melting point of the cerebroside. Relaxation to the stable two phase state took place slowly over several hours. The solubilities of the galactocerebrosides in the other main brain sphingolipid, sphingomyelin, were much higher. Only in the case of the NFA galactocerebroside and at low mole fractions of sphingomyelin was immiscibility detected. Ternary mixtures of the two cerebrosides with sphingomyelin/cholesterol and phosphatidylcholine/cholesterol (PC/Chol) showed different miscibility characteristics. On cooling from 80 degrees C all mixtures formed homogeneous gel states. However, on standing the cerebrosides separated into discrete gel phases in all mixtures but one, that in which HFA galactocerebrosides were mixed with sphingomyelin and cholesterol. The cerebroside in the mixture with the composition closest to that of myelin, HFA/PC/Chol, melted at 38 degrees C. On scanning guinea pig CNS myelin which had been equilibrated at 5 degrees C a transition was detected with Tmax 33 degrees C. On the basis of comparison with the HFA/PC/Chol mixture we propose that the transition in myelin at this temperature is due to the melting of a galactocerebroside gel phase.  相似文献   

3.
Vibrational Raman spectra of the solid and gel phases of bovine brain cerebrosides and the component fractions, kerasin and phrenosin, provide conformational information for these glycosphingolipids in bilayer systems. The carbon-carbon stretching mode profiles (1,150-1,000 cm-1) indicate that at 22 degrees C the alkyl chains assume an almost all-trans arrangement. These spectral data, combined with those from the C-H stretching region (3,050-2,800 cm-1), show that phrenosin forms the most highly ordered polycrystalline solid and kerasin the most ordered gel phase. The conformation of the unsaturated, 24-carbon acyl chains is monitored independently by a skeletal stretching mode at 1,112 cm-1. The alkyl chains in the kerasin and phrenosin gels are sufficiently extended to allow interdigitation of the 24-carbon acyl chains across the midplane of the bilayer. The amide I vibrational mode occurs at a lower frequency in solid phrenosin than kerasin, a shift consistent with stronger hydrogen bounding. This band is broadened and shifted to higher frequencies, however, in the phrenosin gel phase. In both the solid and gel phases natural cerebroside exhibits a composite amide I mode. The disruptive effects on cerebroside chain packing and headgroup orientation arising from mixing with dimyristoyl phosphatidylcholine are examined. Vibrational data for cerebroside are also compared to those for ceramide, sphingosine, and distearoyl phosphatidylcholine structures. Spectral interpretations are discussed in terms of calorimetric and X-ray structural data.  相似文献   

4.
The objective of this study was to determine whether the conversion of free, very long chain fatty acids (C22–C26) to their CoA-esters are involved in cerebroside synthesis, since cerebrosides are uniquely rich in very long chain fatty acids including lignoceric acid (C24:0). We have studied lignoceroyl-CoA synthetase activity in the microsomes isolated from normal and jimpy mouse brain. The jimpy mouse lacks the ability to make myelin and is deficient in enzyme activities involved in the synthesis of myelin components, including cerebrosides. Unexpectedly, the lignoceroyl-CoA synthetase activity in jimpy brain microsomes was slightly higher than that in control microsomes. The palmitoyl (C16:0)-CoA synthetase activity in jimpy brain was not different from the control. The level of cerebrosides in microsomes was grossly lower in jimpy brain. The implication of these findings and the involvement of lignoceric acid activation in cerebroside synthesis is discussed.  相似文献   

5.
The metastable phase behavior of semi-synthetic species of cerebroside sulfate (CBS), with hydroxy and non-hydroxy fatty acids from 16 to 26 carbons in length, was compared in Li+ and K+ using differential scanning calorimetry. The structure of the metastable and various stable phases formed in the presence of these two cations was investigated using a fatty acid spin label, 16-doxylstearate. A number of stable phases with successively higher phase transition temperatures and enthalpies occur in the presence of K+ (see the preceding paper). Li+ prevents formation of the most stable phases with the highest transition temperatures and enthalpies for all species of CBS. However, it does not prevent a transition from the metastable phase to the first stable phase of the longer chain C24 and C26 species. Furthermore, it allows C24:0h-CBS to undergo a similar transition, in contrast to a high K+ concentration, which prevents it. The spin label has anisotropic motion in the metastable gel phase formed by all species of CBS on cooling from the liquid crystalline phase. The spectra resemble those in gel phase phospholipids. The spin label is partially insoluble in the most stable phases formed by all the lipids, including the unsaturated C24:1 species, preventing further elucidation of their structure using this technique. However, the spin label is soluble in the first stable phase formed on cooling by the longer chain C24:0 and C26:0-CBS in Li+ and K+ and by C24:0h-CBS in Li+, and is motionally restricted in this phase. The motional restriction is similar to that observed in the mixed interdigitated bilayers of asymmetric species of phosphatidylcholine and fully interdigitated bilayers formed by symmetric phospholipids. It strongly suggests that the highly asymmetric long chain species of CBS form a mixed interdigitated bilayer in their first stable gel phases while the metastable phase of these and the shorter chain lipids may be partially interdigitated. The metastable phase of C24:1-CBS is more disordered suggesting that it may not be interdigitated at all. Thus the results suggest that (i) the hydroxy fatty acid inhibits but does not prevent formation of a mixed interdigitated bilayer by long chain species of CBS, (ii) an increase in non-hydroxy fatty acid chain length from 24 to 26 carbons promotes it, and (iii) a cis double bond probably prevents any form of interdigitation. These results may be relevant to the physiological and pathological roles of these structural modifications of CBS.  相似文献   

6.
A cerebroside fraction prepared from the mycelia of Schizophyllum commune was further fractionated into five components (I-V) by reverse-phase high-performance liquid chromatography. Fruiting-inducing activity was found in I-IV but not in V. By gas-liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses it was shown that these fractions contained: I, a mixture of N-2'-hydroxypentadecanoyl-1-O-glucosyl-nonadecasphingadienine++ + and N-2'-hydroxyhexadecanoyl-1-O-glucosyl-sphingadienine; II, (4E,8E)-N-D-2'-hydroxyhexadecanoyl-1-O-beta-D-glucopyr anosyl-9-methyl-4,8- sphingadienine (Kawai and Ikeda. 1983. Biochim. Biophys. Acta. 754: 243-248); III, N-2'-hydroxyheptadecanoyl-1-O-glucosyl-nonadecasphingadienine++ +; IV, N-2'-hydroxyoctadecanoyl-1-O-glucosyl-nonadecasphinadienine; V, (4E,8E)-N-2'-hydroxytetracosanoyl-1-O-beta-glucopyrano syl-9-methyl-4,8- sphingadienine. The only structural difference observed between biologically active and inactive cerebrosides was the chain length of acyl moiety; the cerebroside having an acyl chain of 24 carbon atoms was inactive.  相似文献   

7.
Bovine brain cerebroside and its kerasin (beta-D-galactosyl-N-acyl-D-sphingosine) and phrenosin (beta-D-galactosyl-N-(2-D-hydroxyacyl)-D-sphingosine) fractions were mixed with diacylphosphatidylcholines (PCs) to form fully hydrated lamellar phases. These mixtures were examined by differential scanning calorimetry, and phase diagrams for cerebroside/diacylPC mixtures were constructed from the data. Cerebroside was found to be miscible with egg PC at low mole fractions X of cerebroside; the mixture behaves non-ideally for X greater than 0.25. The non-ideal behavior appears to be a superposition of separate interactions of kerasin and phrenosin with egg PC. Strikingly, phrenosin mixes nearly ideally with egg PC. Kerasin mixed with egg PC yields a peritectic phase diagram. Cerebroside and phrenosin were found to be immiscible with dimyristoylphosphatidylcholine (DMPC) in the gel state in low proportions. Both stable and metastable gel phases of kerasin were detected in different endotherms of kerasin/PC mixtures. Kerasin in the stable and metastable gel states exhibits discontinuous and continuous ranges of miscibility, respectively, with DMPC. The stable gel phase of kerasin does not segregate in natural cerebroside. Natural kerasin was found to act isomorphic to semi-synthetic (natural configuration) D-kerasins but not completely to synthetic DL-kerasins of single acyl chain lengths.  相似文献   

8.
Sphingomyelins (SMs) containing homogeneous acyl chains with 12, 14, 16, 18, 24, or 26 carbons were synthesized and characterized using an automated Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at constant temperatures between 10 degrees C and 30 degrees C. SM containing lauroyl (12:0) acyl chains displayed only liquid-expanded behavior. Increasing the length of the saturated acyl chain (e.g., 14:0, 16:0, or 18:0) resulted in liquid-expanded to condensed two-dimensional phase transitions at many temperatures in the 10-30 degrees C range. Similar behavior was observed for SMs with lignoceroyl (24:0) or (cerotoyl) 26:0 acyl chains, but isotherms showed only condensed behavior at 10 and 15 degrees C. Insights into the physico-mechanical in-plane interactions occurring within the different SM phases and accompanying changes in SM phase state were provided by analyzing the interfacial area compressibility moduli. At similar surface pressures, SM fluid phases were less compressible than those of phosphatidylcholines with similar chain structures. The area per molecule and compressibility of SM condensed phases depended upon the length of the saturated acyl chain and upon spreading temperature. Spreading of SMs with very long saturated acyl chains at temperatures 30-35 degrees below T(m) resulted in condensed films with lower in-plane compressibilities, but consistently larger cross-sectional molecular areas than the condensed phases achieved by spreading at temperatures only 10-20 degrees below T(m). This behavior is discussed in terms of the enhancement of SM lateral aggregation by temperature reduction, a common approach used during domain isolation from biomembranes.  相似文献   

9.
The first 13C nuclear magnetic resonance spectrum of a cerebroside is reported. All signals of D-glucosylceramide (I), the cerebroside from human Gaucher's diseased liver, have been assigned by comparison of their chemical shifts with those of model compounds. This data has been used to demonstrate for the first time directly: (a) that the glucosyl moiety must exist in the pyranoside ring form and have a beta anomeric linkage, and (b) that the fatty acyl composition of the aglycon is: alpha-hydroxy, 0%; saturated, 86 +/- 2%; unsaturated long chain, 14 +/- 2%; and unsaturated short chain, less than or equal to 2%. The use of 13C signal shifts in the delta 80 to 120 region (anomeric window) for the assignment of glycon anomeric and ring forms demonstrated herein should be applicable to other glycoconjugates.  相似文献   

10.
A comparative study of the polymorphism exhibited by the polymerizable, tubule-forming phospholipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3- phosphocholine (DC23PC) and its saturated analog 1,2-ditricosanoyl-sn-glycero-3-phosphocholine (DTPC) in aqueous suspension is reported. Differential scanning calorimetry (DSC), as well as freeze-fracture electron microscopy and Raman spectroscopy, have been used to study the influence on phase behavior of rigid diacetylene groups in the fatty acyl chains of a phosphatidylcholine. DTPC large multilamellar vesicle (MLV) and small unilamellar vesicle (SUV) suspensions were found to retain liposome morphology after chain crystallization had occurred. In marked contrast, diacetylenic DC23PC suspensions do not maintain liposomal morphology in converting to the low temperature phase. Large MLVs of DC23PC with outer diameters in excess of 1 micron convert to a gel phase with cylindrical or tubular morphology at 38 degrees C, just a few degrees below the lipid's chain melting temperature (TM(H), i.e. temperature of an endothermic event observed during a heating scan) of 43.1 degrees C. Unlike the large MLVs, small MLVs or SUVs of DC23PC, with diameters of 0.4 +/- 0.3 micron and 0.04 +/- 0.02 micron, respectively, exhibit metastability in the liquid-crystalline state for several tens of degrees below the chain melting temperature prior to converting to a gel phase which, by electron microscopy, manifests itself as extended multilamellar sheets. Raman data collected at TM(H) -40 degrees C demonstrate that the gel state formed by DC23PC is very highly ordered relative to that of DTPC, suggesting that special chain packing requirements are responsible for the novel phase behavior of DC23PC.  相似文献   

11.
Studies have been made on the content of cerebrosides and cerebroside sulfates, as well as on their fatty acid composition in the brain of reptiles, subclass Anapsida (tortoises Emys orbicularis and Testudo horsfieldi) and subclass Lepidosauria (lizards Agama caucasica, A. sanguinolenta, Phrynocephalus mystaceus and snake Natrix tesselata). Total content of cerebrosides and cerebroside sulfates is higher in the brain of Lepidosaurians than in that of Anapsids. In the brain of tortoises, the content of cerebroside fraction with hydroxy fatty acids is significantly higher than of the fraction with normal fatty acids, which is also typical of the brain of homoiothermic mammals and birds. In the brain of Lepidosaurians, concentration of hydroxycerebrosides is considerably lower than of cerebrosides with normal fatty acids, which is similar to lower vertebrates -- amphibians and fishes. Low content of hydroxycerebrosides was found in all the Lepidosaurians investigated, irrespectively of their ecological conditions, being therefore dependent on their phylogenetic position. The composition of fatty acids, both normal and hydroxyderivates, as well as that of glycolipids from the brain of Anapsids and Lepidosaurians is essentially similar. However, some interspecific differences were noted in the pattern of fatty acids of cerebrosides and cerebroside sulfates of the brain, which concern the content of saturated and long chain fatty acids.  相似文献   

12.
Very long chain fatty acid (VLCFA) beta-oxidation was compared in homogenates and subcellular fractions of cultured skin fibroblasts from normal individuals and from Zellweger patients who show greatly reduced numbers of peroxisomes in their tissues. beta-Oxidation of lignoceric (C24:0) acid was greatly reduced compared to controls in the homogenates and the subcellular fractions of Zellweger fibroblasts. The specific activity of C24:0 acid beta-oxidation was highest in the crude peroxisomal pellets of control fibroblasts. Fractionation of the crude mitochondrial and the crude peroxisomal pellets on Percoll density gradients revealed that the C24:0 acid oxidation was carried out entirely by peroxisomes, and the peroxisomal beta-oxidation activity was missing in Zellweger fibroblasts. In contrast to the beta-oxidation of C24:0 acid, the beta-oxidation of C24:0 CoA was observed in both mitochondria and peroxisomes. We postulate that a very long chain fatty acyl CoA (VLCFA CoA) synthetase, which is different from long chain fatty acyl CoA synthetase, is required for the effective conversion of C24:0 acid to C24:0 CoA. The VLCFA CoA synthetase appears to be absent from the mitochondrial membrane but present in the peroxisomal membrane.  相似文献   

13.
Lactosylceramide (LacCer) is a key intermediate in glycosphingolipid metabolism and is highly enriched in detergent-resistant biomembrane fractions associated with microdomains, i.e., rafts and caveolae. Here, the lateral interactions of cholesterol with LacCers containing various homogeneous saturated (8:0, 16:0, 18:0, 24:0) or monounsaturated acyl chains (18:1, 24:1) have been characterized using a Langmuir-type film balance. Cholesterol-induced changes in lateral packing were assessed by measuring changes in average molecular area, i.e., area condensations, and in lateral elasticity, i.e., surface compressional moduli (C S(-1)) with emphasis on high surface pressures (> or = 30 mN/m) that mimic biomembrane conditions. Cholesterol most dramatically affected the lateral packing elasticity of LacCers with long saturated acyl chains at sterol mole fractions > or = 0.3, consistent with liquid-ordered (LO) phase formation. The lateral elasticity within the LacCer-cholesterol LO-phase was much lower than that observed within pure LacCer condensed, i.e., gel, phase. The magnitude of the cholesterol-induced reduction in lateral elasticity was strongly mitigated by cis monounsaturation in the LacCer acyl chain. At identical high sterol mole fractions, higher lateral elasticity was observed within LacCer-cholesterol mixtures compared with galactosylceramide-cholesterol and sphingomyelin-cholesterol mixtures. The results show how changes to sphingolipid headgroup and acyl chain structure contribute to the modulation of lateral packing elasticity in sphingolipid-cholesterol LO-phases.  相似文献   

14.
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the effect of increasing chain-unsaturation on the structure and properties of the hydrated cerebrosides N-stearoyl, -oleoyl, and -linoleoyl galactosylsphingosine (NSGS, NOGS, and NLnGS, respectively). DSC of hydrated (70 wt% water) NSGS shows an endothermic transition at 85 degrees C (delta H = 18.0 kcal/mol NSGS) and a broad exothermic transition at 40-60 degrees C, the latter being dependent upon the previous cooling rate. X-Ray diffraction patterns recorded at 21, 61, and 86 degrees C provide evidence for interconversions between metastable and stable crystalline NSGS bilayer phases. The properties of the unsaturated-chain cerebrosides are more complex. Hydrated NOGS shows a single endothermic transition at 44.8 degrees C (delta H = 11.5 kcal/mol NOGS). However, incubation of NOGS at 49 degrees C for 24 h results in a second transition at 55.5 degrees C. By cycling NOGS between 0 and 49 degrees C complete conversion into this higher melting phase (delta H = 12.1 kcal/mol NOGS) is achieved. X-ray diffraction confirms a bilayer phase at all temperatures and delineates the conversions between a crystalline phase at 21 degrees C (bilayer period d = 56.5A), a second crystalline phase at 47 degrees C (d = 69.9A), and a liquid crystalline phase at 59 degrees C (d = 52.0A). The more unsaturated NLnGS shows two transitions, a sharp transition at 28 degrees C (delta H = 8.0 kcal/mol NLGS) and a broad, low-enthalpy transition at 42 degrees C (delta H = 0.4 kcal/mol NLGS). Again, incubation between the two transitions leads to a single transition at 44 degrees C (delta H = 9.3 kcal/mol NLGS). X-ray diffraction demonstrates conversions between two crystalline bilayer phases (d = 55.2A and d = 68.4A), and a liquid crystalline bilayer phase (d = 51.8A). Thus, increased unsaturation in the amide-linked fatty acyl chain of cerebrosides results in decreased chain-melting temperatures (NSGS greater than NOGS greater than NLnGS) and has marked effects on their structural properties.  相似文献   

15.
We have identified a protein in the soluble fraction from mouse cardiac tissue extracts which is rapidly and selectively acylated by myristyl CoA. This protein was partially purified by anion-exchange chromatography and gel filtration, and the acylation reaction was measured using [3H]myristyl CoA as substrate, followed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis to resolve [3H]fatty acyl polypeptides. The [3H]acyl protein migrated as heterogeneous bands corresponding to relative masses (MrS) of 42,000-51,000 under nonreducing conditions or as a single polypeptide of Mr 51,000 in the presence of reducing agents. Fatty acyl chain incorporation into protein was very rapid and already maximum after 30 s of incubation, whereas no acylation was detected using heat-denatured samples or when the reaction was stopped immediately after initiation. Only the acyl CoA served as fatty acyl chain donor. No incorporation into protein occurred when myristyl CoA was substituted by myristic acid, ATP, and CoA. A time-dependent reduction in the level of [3H]fatty acyl polypeptide was observed upon addition of excess unlabeled myristyl CoA, indicating the ability of the labeled acyl moiety of the protein to turn over during incubation. The saturated C10:0, C14:0, and C16:0 acyl CoAs were more effective to chase the label from the [3H]acyl polypeptide than the C18:0 and C18:1 acyl CoAs. These results provide evidence for a 51-kilodalton polypeptide which serves as an acceptor for fatty acyl chains and could represent an important intermediate in fatty acyl chain transfer reactions in cardiac tissue.  相似文献   

16.
The properties of brain galactocerebroside monolayers   总被引:1,自引:0,他引:1  
Using a Langmuir film balance we have compared the properties of films of the brain galactocerebrosides at 37 degrees C. There are two types of cerebroside in brain, those with an alpha-hydroxy substituent on the acyl chain (HFA) and those without (NFA). At equivalent pressures the areas of both cerebroside films are significantly less than the areas of films of the brain glycerolipids, the choline and ethanolamine phosphatides. The isotherm of NFA galactocerebrosides has two discontinuities, one at low and one at high film pressure, while the isotherm of HFA galactocerebrosides is a smooth curve at all film pressures. Below the high-pressure transition the area of the NFA film is significantly larger than the area of the HFA film. When compressed beyond the high-pressure transition there is a marked hysteresis between compression and expansion isotherms of the NFA galactocerebrosides. The pressures of both films continue to rise steeply when they are compressed into areas which are too small for them to exist as simple monolayers. We conclude that under compression cerebroside films form bilayer structures; that bilayer formation starts at low pressure and occurs progressively as the HFA cerebroside monolayer is compressed, but occurs more abruptly in the NFA cerebroside monolayer at the high-pressure-transition region of the isotherm. A study of pure cerebrosides with a single defined acyl chain shows that there is a correlation between the relative volumes of the hydrophobic and hydrophilic parts of the molecule and the ease of bilayer formation. The larger the relative volume of the hydrophilic group the more readily the cerebroside forms a bilayer film. Other brain lipids added to cerebroside monolayers have sharply differing effects on their areas. The areas of films containing cholesterol are less than the areas calculated by adding the areas of the pure components multiplied by their mole fractions. On the other hand, the area of phosphatidylcholine-containing films is much larger than calculated.  相似文献   

17.
Candida lipolytica yeast was grown batchwise on glucose medium. Cerebrosides were isolated from the sphingolipid fraction of total lipids using column chromatography and separated into two compounds by high-performance thin-layer chromatography. Glucose was detected as the sole sugar constituent in cerebrosides. The fatty acid composition of cerebrosides was characterised by a predominance of saturated fatty acids and by a high proportion of fatty acids with 16 carbon atoms. The dominant fatty acid was h16:0. The principal long-chain base components of both cerebroside species were trihydroxy bases, 18- and 20-phytosphinosine. The unique characteristic of cerebrosides was the presence of a high proportion of sphingosine (one-fourth of the total long-chain bases), which is a common characteristic of mammalian sphingolipids and rarely occurs in yeast cerebrosides. The ceramide moiety profile of cerebrosides is similar to that of epidermal ceramides, which implies a possibility for their application in care cosmetics.  相似文献   

18.
Abstract— Cerebrosides, sulphatides and sphingomyelin were isolated from bovine CNS myelin and from myelin-free axons derived from myelinated axons. The fatty acid composition of each sphingolipid was determined by gas-liquid chromatography of the fatty acid methyl esters. In each case the fatty acids of the axonal sphingolipids were of shorter average chain length than those from the corresponding myelin lipids. These differences, however, were small and the fatty acids of the axonal cerebrosides and sulphatides were similar in average chain length to those reported previously for bovine myelin. The principal unsubstituted acid of both cerebroside and sulphatide from axons was 24: 1, with the total long chain acids (> C18) amounting to 80 and 85 per cent, respectively. The corresponding figures for myelin galactolipids were 94 and 95 per cent long chain acids. The principal α-hydroxy acid of both axonal galactolipids was 24 h:0, with cerebroside having 80 per cent and sulphatide 92 per cent long chain acids, compared to the figures of 87 and 97 per cent for the corresponding myelin lipids. In axonal sphingomyelin the major acid was 18:0 (compared to 24:1 in myelin) and the long chain acids were 61 per cent of the total vs 76 per cent of the total for myelin sphingomyelin. The non-identity of axonal and myelin sphingolipid fatty acids substantiates the belief that they are intrinsic axonal constituents. These findings do not rule out the possibility of a close metabolic relationship between the sphingolipids of the axon and its myelin sheath.  相似文献   

19.
Four glycolipids have been isolated from three fractions of pig blood. The glycolipids were presumably cerebroside, diglycosyl ceramide, triglycosyl ceramide, and globoside. The blood fractions were erythrocytes and plasma high and low density lipoproteins. Fatty acid distributions were determined for each glycolipid as a means to assist in identifying relationships among the several glycolipids. Normal fatty acids predominated in all glycolipids except the globosides from erythrocytes in which the amount of hydroxy acids was slightly greater than the amount of normal acids. Hydroxy acids appeared to be present in all the glycolipids, but the concentration was very low in cerebrosides isolated from high density lipoproteins and erythrocytes, and in diglycosyl ceramide and globoside of the low density lipoproteins. In general, the average fatty acid chain length increased from cerebroside to globoside. This was most apparent in erythrocytes and also greater for normal acids than for hydroxy acids. Fatty acid distributions of erythrocyte glycolipids had sufficient variation to make a metabolic relationship by simple addition of a hexose appear doubtful. While the fatty acid distributions found in plasma lipoproteins were more similar, some means of acyl group selection is probably present for either the synthesis or degradation of these glycolipids.  相似文献   

20.
The enthalpy of the gel-to-liquid crystalline phase transition for kerasin (15.8 kcal/mol) is found to be markedly higher than that for phrenosin and unfractionated bovine brain cerebrosides (about 7 kcal/mol). Evidence for a higher degree of order in the hydrocarbon chains and a different configuration in the polar region of kerasin is supplied by Raman spectroscopic parameters for these gel phases. The high transition enthalpy for kerasin is ascribed to a lesser accommodation of gauche conformers in the hydrocarbon chains just below the transition temperature. The thermodynamic behavior of these cerebroside fractions, including hysteresis in kerasin gels, is compared to that previously reported for sphingomyelins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号