首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The epsilon-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the epsilon-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from epsilon-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic epsilon-proteobacteria.  相似文献   

2.
The epsilon-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR operons from the two pathogenic bacteria H. pylori and C. jejuni and their expression in Wolinella succinogenes, a non-pathogenic -proteobacterium. To our knowledge, this is the first documentation of heterologous membrane protein production in W. succinogenes. We demonstrate that the replacement of the homologous enzyme from W. succinogenes with the heterologous enzymes yields mutants where fumarate respiration is fully functional. We have isolated and characterized the heterologous QFR enzymes. The high quality of the enzyme preparation enabled us to determine unequivocally by analytical ultracentrifugation the homodimeric state of the three detergent-solubilized heterotrimeric QFR enzymes, to accurately determine the different oxidation-reduction ('redox') midpoint potentials of the six prosthetic groups, the Michaelis constants for the quinol substrate, maximal enzymatic activities and the characterization of three different anti-helminths previously suggested to be inhibitors of the QFR enzymes from H. pylori and C. jejuni. This characterization allows, for the first time, a detailed comparison of the QFR enzymes from C. jejuni and H. pylori with that of W. succinogenes.  相似文献   

3.
Bacterial c -type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX2CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c -type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX2CK or CX2CH). W. succinogenes CcsA2 was found to attach haem to standard CX2CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX2CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni . Different apo-cytochrome variants carrying the CX15CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli . It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c -type cytochromes.  相似文献   

4.
Lancaster CR 《FEBS letters》2003,555(1):21-28
The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.  相似文献   

5.
Membrane-bound succinate dehydrogenases (succinate:quinone reductases, SQR) and fumarate reductases (quinol:fumarate reductases, QFR) couple the oxidation of succinate to fumarate to the reduction of quinone to quinol and also catalyse the reverse reaction. SQR (respiratory complex II) is involved in aerobic metabolism as part of the citric acid cycle and of the aerobic respiratory chain. QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor, and is part of an electron transport chain catalysing the oxidation of various donor substrates by fumarate. QFR and SQR complexes are collectively referred to as succinate:quinone oxidoreductases (EC 1.3.5.1), have very similar compositions and are predicted to share similar structures. The complexes consist of two hydrophilic and one or two hydrophobic, membrane-integrated subunits. The larger hydrophilic subunit A carries covalently bound flavin adenine dinucleotide and subunit B contains three iron-sulphur centres. QFR of Wolinella succinogenes and SQR of Bacillus subtilis contain only one hydrophobic subunit (C) with two haem b groups. In contrast, SQR and QFR of Escherichia coli contain two hydrophobic subunits (C and D) which bind either one (SQR) or no haem b group (QFR). The structure of W. succinogenes QFR has been determined at 2.2 A resolution by X-ray crystallography (C.R.D. Lancaster, A. Kr?ger, M. Auer, H. Michel, Nature 402 (1999) 377-385). Based on this structure of the three protein subunits and the arrangement of the six prosthetic groups, a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction was proposed. The W. succinogenes QFR structure is different from that of the haem-less QFR of E. coli, described at 3.3 A resolution (T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees, Science 284 (1999) 1961-1966), mainly with respect to the structure of the membrane-embedded subunits and the relative orientations of soluble and membrane-embedded subunits. Also, similarities and differences between QFR transmembrane helix IV and transmembrane helix F of bacteriorhodopsin and their implications are discussed.  相似文献   

6.
Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone. Previously, the crystal structure of QFR from Wolinella succinogenes was determined based on two different crystal forms, and the site of fumarate binding in the flavoprotein subunit A of the enzyme was located between the FAD-binding domain and the capping domain [Lancaster, C.R.D., Kr?ger, A., Auer, M., & Michel, H. (1999) Nature 402, 377--385]. Here we describe the structure of W. succinogenes QFR based on a third crystal form and refined at 3.1 A resolution. Compared with the previous crystal forms, the capping domain is rotated in this structure by approximately 14 degrees relative to the FAD-binding domain. As a consequence, the topology of the dicarboxylate binding site is much more similar to those of membrane-bound and soluble fumarate reductase enzymes from other organisms than to that found in the previous crystal forms of W. succinogenes QFR. This and the effects of the replacement of Arg A301 by Glu or Lys by site-directed mutagenesis strongly support a common mechanism for fumarate reduction in this superfamily of enzymes.  相似文献   

7.
An overview of the present knowledge about succinate:quinone oxidoreductase in Paracoccus denitrificans and Bacillus subtilis is presented. P. denitrificans contains a monoheme succinate:ubiquinone oxidoreductase that is similar to that of mammalian mitochondria with respect to composition and sensitivity to carboxin. Results obtained with carboxin-resistant P. denitrificans mutants provide information about quinone-binding sites on the enzyme and the molecular basis for the resistance. B. subtilis contains a diheme succinate:menaquinone oxidoreductase whose activity is dependent on the electrochemical gradient across the cytoplasmic membrane. Data from studies of mutant variants of the B. subtilis enzyme combined with available crystal structures of a similar enzyme, Wolinella succinogenes fumarate reductase, substantiate a proposed explanation for the mechanism of coupling between quinone reductase activity and transmembrane potential.  相似文献   

8.
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.  相似文献   

9.
《BBA》2002,1553(1-2):84-101
The ϵ-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the ϵ-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from ϵ-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic ϵ-proteobacteria.  相似文献   

10.
The anaerobically expressed fumarate reductase and aerobically expressed succinate dehydrogenase from Escherichia coli comprise two different classes of succinate:quinone oxidoreductases (SQR), often termed respiratory complex II. The X-ray structures of both membrane-bound complexes have revealed that while the catalytic/soluble domains are structurally similar the quinone binding domains of the enzyme complexes are significantly different. These results suggest that the anaerobic and aerobic forms of complex II have evolved different mechanisms for electron and proton transfer in their respective membrane domains.  相似文献   

11.
The succinate dehydrogenase isolated from Bacillus subtilis was found to catalyze the oxidation of succinate with hydrophilic quinones. Either naphthoquinones or benzoquinones served as acceptors. The enzyme activity increased with the redox potential of the quinone. The highest turnover number was commensurate with that of the bacterial succinate respiration in vivo. The succinate dehydrogenase was similarly active in fumarate reduction with quinols. The highest activity was obtained with the most electronegative quinol. The fumarate reductase isolated from Wolinella succinogenes catalyzed succinate oxidation with quinones and fumarate reduction with the corresponding quinols at activities similar to those of the B. subtilis enzyme. Succinate oxidation by the lipophilic quinones, ubiquinone or vitamin K-1, was monitored as cytochrome c reduction using proteoliposomes containing succinate dehydrogenase together with the cytochrome bc1 complex. The activity with ubiquinone or vitamin K-1 was commensurate with the succinate respiratory activity of bacteria or of the bacterial membrane fraction. The results suggest that menaquinone is involved in the succinate respiration of B. subtilis, although its redox potential is unfavorable.  相似文献   

12.
Succinate:quinone reductase is a membrane-bound enzyme of the citric acid cycle and the respiratory chain. Carboxin is a potent inhibitor of the enzyme of certain organisms. The bacterium Paracoccus denitrificans was found to be sensitive to carboxin in vivo, and mutants that grow in the presence of 3′-methyl carboxin were isolated. Membranes of the mutants showed resistant succinate:quinone reductase activity. The mutation conferring carboxin resistance was identified in four mutants. They contained the same missense mutation in the sdhD gene, which encodes one of two membrane-intrinsic polypeptides of the succinate:quinone reductase complex. The mutation causes an Asp to Gly replacement at position 89 in the SdhD polypeptide. P. denitrificans strains that overproduced wild-type or mutant enzymes were constructed. Enzymic properties of the purified enzymes were analyzed. The apparent K m for quinone (DPB) and the sensitivity to thenoyltrifluoroacetone was normal for the carboxin-resistant enzyme, but the succinate:quinone reductase activity was lower than for the wild-type enzyme. Mutations conferring carboxin resistance indicate the region on the enzyme where the inhibitor binds. A previously reported His to Leu replacement close to the [3Fe-4S] cluster in the iron-sulfur protein of Ustilago maydis succinate:quinone reductase confers resistance to carboxin and thenoyltrifluoroacetone. The Asp to Gly replacement in the P. denitrificans SdhD polypeptide, identified in this study to confer resistance to carboxin but not to thenoyltrifluoroacetone, is in a predicted cytoplasmic loop connecting two transmembrane segments. It is likely that this loop is located in the neighborhood of the [3Fe-4S] cluster. Received: 18 November 1997 / Accepted: 13 February 1998  相似文献   

13.
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.  相似文献   

14.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

15.
C(4)-dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes, since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C(4)-dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10(3). The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the presence of internal Na(+), whereas the electrogenic antiport also operated in the absence of Na(+). In the absence of Na(+), no electrochemical proton potential (delta p) was measured across the membrane of cells catalyzing fumarate respiration. This suggests that the proton potential generated by fumarate respiration is dissipated by the concomitant electrogenic dicarboxylate antiport. Three gene loci (dcuA, dcuB, and dctPQM) encoding putative C(4)-dicarboxylate transporters were identified on the genome of W. succinogenes. The predicted gene products of dcuA and dcuB are similar to the Dcu transporters that are involved in the fumarate respiration of Escherichia coli with external C(4)-dicarboxylates. The genes dctP, -Q, and -M probably encode a binding-protein-dependent secondary uptake transporter for dicarboxylates. A mutant (DcuA(-) DcuB(-)) of W. succinogenes lacking the intact dcuA and dcuB genes grew by nitrate respiration with succinate as the carbon source but did not grow by fumarate respiration with fumarate, malate, or aspartate as substrates. The DcuA(-), DcuB(-), and DctQM(-) mutants grew by fumarate respiration as well as by nitrate respiration with succinate as the carbon source. Cells of the DcuA(-) DcuB(-) mutant performed fumarate respiration without generating a proton potential even in the presence of Na(+). This explains why the DcuA(-) DcuB(-) mutant does not grow by fumarate respiration. Growth by fumarate respiration appears to depend on the function of the Na(+)-dependent, electroneutral dicarboxylate antiport which is catalyzed exclusively by the Dcu transporters. Dicarboxylate transport via the electrogenic uniport is probably catalyzed by the DctPQM transporter and by a fourth, unknown transporter that may also operate as an electrogenic antiporter.  相似文献   

16.
Mileni M  Haas AH  Mäntele W  Simon J  Lancaster CR 《Biochemistry》2005,44(50):16718-16728
Quinol:fumarate reductase (QFR) is the terminal enzyme of anaerobic fumarate respiration. This membrane protein complex couples the oxidation of menaquinol to menaquinone to the reduction of fumarate to succinate. Although the diheme-containing QFR from Wolinella succinogenes is known to catalyze an electroneutral process, its three-dimensional structure at 2.2 A resolution and the structural and functional characterization of variant enzymes revealed locations of the active sites that indicated electrogenic catalysis. A solution to this apparent controversy was proposed with the so-called "E-pathway hypothesis". According to this, transmembrane electron transfer via the heme groups is strictly coupled to a parallel, compensatory transfer of protons via a transiently established pathway, which is inactive in the oxidized state of the enzyme. Proposed constituents of the E-pathway are the side chain of Glu C180 and the ring C propionate of the distal heme. Previous experimental evidence strongly supports such a role of the former constituent. Here, we investigate a possible heme-propionate involvement in redox-coupled proton transfer by a combination of specific (13)C-heme propionate labeling and Fourier transform infrared (FTIR) difference spectroscopy. The labeling was achieved by creating a W. succinogenes mutant that was auxotrophic for the heme-precursor 5-aminolevulinate and by providing [1-(13)C]-5-aminolevulinate to the medium. FTIR difference spectroscopy revealed a variation on characteristic heme propionate vibrations in the mid-infrared range upon redox changes of the distal heme. These results support a functional role of the distal heme ring C propionate in the context of the proposed E-pathway hypothesis of coupled transmembrane electron and proton transfer.  相似文献   

17.
Enzymology and bioenergetics of respiratory nitrite ammonification   总被引:1,自引:0,他引:1  
Nitrite is widely used by bacteria as an electron acceptor under anaerobic conditions. In respiratory nitrite ammonification an electrochemical proton potential across the membrane is generated by electron transport from a non-fermentable substrate like formate or H(2) to nitrite. The corresponding electron transport chain minimally comprises formate dehydrogenase or hydrogenase, a respiratory quinone and cytochrome c nitrite reductase. The catalytic subunit of the latter enzyme (NrfA) catalyzes nitrite reduction to ammonia without liberating intermediate products. This review focuses on recent progress that has been made in understanding the enzymology and bioenergetics of respiratory nitrite ammonification. High-resolution structures of NrfA proteins from different bacteria have been determined, and many nrf operons sequenced, leading to the prediction of electron transfer pathways from the quinone pool to NrfA. Furthermore, the coupled electron transport chain from formate to nitrite of Wolinella succinogenes has been reconstituted by incorporating the purified enzymes into liposomes. The NrfH protein of W. succinogenes, a tetraheme c-type cytochrome of the NapC/NirT family, forms a stable complex with NrfA in the membrane and serves in passing electrons from menaquinol to NrfA. Proteins similar to NrfH are predicted by open reading frames of several bacterial nrf gene clusters. In gamma-proteobacteria, however, NrfH is thought to be replaced by the nrfBCD gene products. The active site heme c group of NrfA proteins from different bacteria is covalently bound via the cysteine residues of a unique CXXCK motif. The lysine residue of this motif serves as an axial ligand to the heme iron thus replacing the conventional histidine residue. The attachment of the lysine-ligated heme group requires specialized proteins in W. succinogenes and Escherichia coli that are encoded by accessory nrf genes. The proteins predicted by these genes are unrelated in the two bacteria but similar to proteins of the respective conventional cytochrome c biogenesis systems.  相似文献   

18.
The majority of bacterial membrane-bound NiFe-hydrogenases and formate dehydrogenases have homologous membrane-integral cytochrome b subunits. The prototypic NiFe-hydrogenase of Wolinella succinogenes (HydABC complex) catalyzes H2 oxidation by menaquinone during anaerobic respiration and contains a membrane-integral cytochrome b subunit (HydC) that carries the menaquinone reduction site. Using the crystal structure of the homologous FdnI subunit of Escherichia coli formate dehydrogenase-N as a model, the HydC protein was modified to examine residues thought to be involved in menaquinone binding. Variant HydABC complexes were produced in W. succinogenes, and several conserved HydC residues were identified that are essential for growth with H2 as electron donor and for quinone reduction by H2. Modification of HydC with a C-terminal Strep-tag II enabled one-step purification of the HydABC complex by Strep-Tactin affinity chromatography. The tagged HydC, separated from HydAB by isoelectric focusing, was shown to contain 1.9 mol of heme b/mol of HydC demonstrating that HydC ligates both heme b groups. The four histidine residues predicted as axial heme b ligands were individually replaced by alanine in Strep-tagged HydC. Replacement of either histidine ligand of the heme b group proximal to HydAB led to HydABC preparations that contained only one heme b group. This remaining heme b could be completely reduced by quinone supporting the view that the menaquinone reduction site is located near the distal heme b group. The results indicate that both heme b groups are involved in electron transport and that the architecture of the menaquinone reduction site near the cytoplasmic side of the membrane is similar to that proposed for E. coli FdnI.  相似文献   

19.
Matsson M  Tolstoy D  Aasa R  Hederstedt L 《Biochemistry》2000,39(29):8617-8624
Succinate:quinone reductases are membrane-bound enzymes that catalyze electron transfer from succinate to quinone. Some enzymes in vivo reduce ubiquinone (exergonic reaction) whereas others reduce menaquinone (endergonic reaction). The succinate:menaquinone reductases all contain two heme groups in the membrane anchor of the enzyme: a proximal heme (heme b(P)) located close to the negative side of the membrane and a distal heme (heme b(D)) located close to the positive side of the membrane. Heme b(D) is a distinctive feature of the succinate:menaquinone reductases, but the role of this heme in electron transfer to quinone has not previously been analyzed. His28 and His113 are the axial ligands to heme b(D) in Bacillus subtilis succinate:menaquinone reductase. We have individually replaced these His residues with Leu and Met, respectively, resulting in assembled membrane-bound enzymes. The H28L mutant enzyme lacks succinate:quinone reductase activity probably due to a defective quinone binding site. The H113M mutant enzyme contains heme b(D) with raised midpoint potential and is impaired in electron transfer to menaquinone. Our combined experimental data show that the heme b(D) center, into which we include a quinone binding site, is crucial for succinate:menaquinone reductase activity. The results support a model in which menaquinone is reduced on the positive side of the membrane and the transmembrane electrochemical potential provides driving force for electron transfer from succinate via heme b(P) and heme b(D) to menaquinone.  相似文献   

20.
Amino acids are key carbon and energy sources for the asaccharolytic food-borne human pathogen Campylobacter jejuni . During microaerobic growth in amino acid rich complex media, aspartate, glutamate, proline and serine are the only amino acids significantly utilized by strain NCTC 11168. The catabolism of aspartate and glutamate was investigated. An aspartase ( aspA ) mutant (unable to utilize any amino acid except serine) and a Cj0762 c ( aspB ) mutant lacking aspartate:glutamate aminotransferase (unable to utilize glutamate), were severely growth impaired in complex media, and an aspA sdaA mutant (also lacking serine dehydratase) failed to grow in complex media unless supplemented with pyruvate and fumarate. Aspartase was shown by activity and proteomic analyses to be upregulated by oxygen limitation, and aspartate enhanced oxygen-limited growth of C. jejuni in an aspA -dependent manner. Stoichiometric aspartate uptake and succinate excretion involving the redundant DcuA and DcuB transporters indicated that in addition to a catabolic role, AspA can provide fumarate for respiration. Significantly, an aspA mutant of C. jejuni 81-176 was impaired in its ability to persist in the intestines of outbred chickens relative to the parent strain. Together, our data highlight the dual function of aspartase in C. jejuni and suggest a role during growth in the avian gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号