共查询到20条相似文献,搜索用时 0 毫秒
1.
Giroix MH Scruel O Courtois P Sener A Portha B Malaisse WJ 《Archives of biochemistry and biophysics》2002,408(1):111-123
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase. 相似文献
2.
Melting behaviour of D-sucrose, D-glucose and D-fructose 总被引:1,自引:0,他引:1
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars. 相似文献
3.
d-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM d-glucose. Even in the absence of d-glucose, d-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of d-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of d-glucose and/or d-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). d-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM d-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, d-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of d-glucose and/or d-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either 86Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio. 相似文献
4.
D-glucosaminic acid (2-amino-2-deoxy-D-gluconic acid), a component of bacterial lipopolysaccharides and a chiral synthon, is easily prepared on a multigram scale by air oxidation of D-glucosamine (2-amino-2-deoxy-D-glucose) catalysed by glucose oxidase. 相似文献
5.
Roberts A Bar-Or D Winkler JV Rael LT 《Biochemical and biophysical research communications》2003,304(4):755-757
Epinephrine is known to be rapidly oxidized during sepsis. Ischemia and acidosis, which often accompany sepsis, are associated with the release of weakly bound cupric ions from plasma proteins. We investigated whether copper promotes oxidation of epinephrine at both physiological and acidic pH and whether D-Asp-D-Ala-D-His-D-Lys (D-DAHK), a human albumin (HSA) N-terminus synthetic peptide with a high affinity for cupric ions, attenuates this oxidation. Epinephrine alone [100 microM] or with CuCl(2) [10 microM], and with CuCl(2) [10 microM] and D-DAHK [20 microM] at pH 7.4, 7.0, 6.5, and 6.0 were incubated for 1h at 37 degrees C. Epinephrine oxidation was measured by the spectrophotometric quantification of its oxidation product, adrenochrome. We found that adrenochrome increased, suggesting copper-induced oxidation of epinephrine. At pH 7.4, 7.0, 6.5, and 6.0, adrenochrome increased by 47%, 53%, 24%, and 6% above baseline, respectively. D-DAHK attenuated the copper-induced oxidation of epinephrine to baseline levels. These in vitro results indicate that copper-induced epinephrine oxidation is greatest at the physiological pH 7.4 as well as in severe acidosis, pH 7.0, and that D-DAHK completely inhibits this oxidation. 相似文献
6.
Song YM Yang ST Lim SS Kim Y Hahm KS Kim JI Shin SY 《Biochemical and biophysical research communications》2004,314(2):615-621
A synthetic amphipathic alpha-helical model peptide, KLW, displays non-cell selective cytotoxicity. To investigate the effects of L- or D-Pro kink incorporation into hydrophobic or hydrophilic helix face of KLW on structure, cell selectivity, and membrane-binding affinity, we designed a series of four peptides, in which Leu(9) and Lys(11) in the hydrophobic and hydrophilic helix face of KLW, respectively, are substituted with L- or D-Pro. A L- or D-Pro substitution (KLW-L9P or KLW-L9p) of Leu(9) at the hydrophobic helix face of KLW induced a more significant reduction in hemolytic activity with improved antibacterial activity than that (KLW-K11P or KLW-K11p) of Lys(11) in the hydrophilic helix face. In addition, D-Pro-containing peptides (KLW-L9p and KLW-K11p) displayed less hemolytic activity than L-Pro-containing peptides (KLW-L9P and KLW-K11P). Tryptophan fluorescence studies revealed that bacterial cell selectivity of KLW-L9P, KLW-L9p, and KLW-K11p is closely related to selective interactions with negatively charged phospholipids. CD analysis revealed that L- or D-Pro incorporation into KLW reduces the alpha-helicity of the peptide and D-Pro incorporation induces more significant disruption in alpha-helical structure than L-Pro incorporation. Our results collectively suggest that D-Pro incorporation into the hydrophobic helix face of non-cell selective amphipathic alpha-helical peptides may be useful for the design of novel antimicrobial peptides possessing high bacterial cell selectivity without hemolytic activity. 相似文献
7.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects. 相似文献
8.
The inhibitory effects of flavonoids and antiestrogens on the Glut1 glucose transporter in human erythrocytes 总被引:1,自引:0,他引:1
Flavonoids and isoflavonoids are potent inhibitors of glucose efflux in human erythrocytes. Net changes of sugars inside the cells were measured by right angle light scattering. The inhibitory potency of hydroxylated flavonoids depends on the pH of the medium. The apparent affinity is maximal at low pH where the molecule is in the undissociated form. The following K(i)-values at pH 6.5 in microM have been obtained: phloretin 0.37+/-0.03, myricetin 0.76+/-0.42, quercetin 0.93+/-0.28, kaempferol 1.33+/-0.17, isoliquiritigenin 1.96, genistein 3.92+/-0.62, naringenin 8.88+/-1.88, 7-hydroxyflavone 17.58+/-3.15 and daidzein 18.62+/-2.85. Flavonoids carrying hydroxyl groups are weak acids and are deprotonated at high pH-values. From spectral changes pK-values between 6.80 (naringenin) and 7.73 (myricetin) have been calculated. No such pK-value could be obtained from quercetin which was rather unstable at alkaline pH. Flavone itself without a hydroxyl group does not demonstrate any absorbance changes at different pH-values and no significant change in inhibition of glucose transport with pH (K(i)-value around 35 microM). In this respect it is similar to the antiestrogens diethylstilbestrol, tamoxifen and cyclofenil with K(i)-values for glucose efflux inhibition of 2.61+/-0.30, 6.75+/-2.03 and 3.97+/-0.54 microM. Except for phloretin, the flavonoids investigated have planar structures. The inhibitory activity in glucose efflux of planar flavonoids increases exponentially with the number of hydroxyl groups in the molecule. 相似文献
9.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides. 相似文献
10.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements. 相似文献
11.
Synthesis of 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone as a monomer for the preparation of copolyesters 总被引:1,自引:0,他引:1
2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone has been prepared as a crystalline compound in acceptable yield by two different routes. An initial assay of copolymerization with L-lactide by ring-opening polymerization was carried out. The incorporation of the carbohydrate monomer into the polymer chain was about 2%. 相似文献
12.
Okazaki S Suzuki A Komeda H Yamaguchi S Asano Y Yamane T 《Journal of molecular biology》2007,368(1):79-91
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop. 相似文献
13.
Yoshida H Yamada M Nishitani T Takada G Izumori K Kamitori S 《Journal of molecular biology》2007,374(2):443-453
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246. 相似文献
14.
5-Thio-D-arabinopyranose (5) and 5-thio-D-xylopyranose (10) were synthesized from the corresponding D-pentono-1,4-lactones. After regioselective bromination at C-5, transformation into 5-S-acetyl-5-thio derivatives, reduction into lactols and deprotection afforded the title compounds in 49 and 42% overall yield, respectively. 相似文献
15.
Kawazoe N Okada H Fukushi E Yamamori A Onodera S Kawabata J Shiomi N 《Carbohydrate research》2008,343(3):549-554
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose. 相似文献
16.
Kawazoe T Tsuge H Imagawa T Aki K Kuramitsu S Fukui K 《Biochemical and biophysical research communications》2007,355(2):385-391
D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent endogenous ligand of N-methyl-D-aspartate type glutamate receptors. It also has been suggested that D-DOPA, the stereoisomer of L-DOPA, is oxidized by DAO and then converted to dopamine via an alternative biosynthetic pathway. Here, we provide direct crystallographic evidence that D-DOPA is readily fitted into the active site of human DAO, where it is oxidized by the enzyme. Moreover, our kinetic data show that the maximal velocity for oxidation of D-DOPA is much greater than for D-serine, which strongly supports the proposed alternative pathway for dopamine biosynthesis in the treatment of Parkinson's disease. In addition, determination of the structures of human DAO in various states revealed that the conformation of the hydrophobic VAAGL stretch (residues 47-51) to be uniquely stable in the human enzyme, which provides a structural basis for the unique kinetic features of human DAO. 相似文献
17.
The Hypocrea jecorina LXR1 was described as the first fungal l-xylulose reductase responsible for NADPH dependent reduction of l-xylulose to xylitol in l-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal d-mannitol 2-dehydrogenases. Lxr1 and the orthologous Aspergillus nigermtdA are not induced by l-arabinose but expressed at low levels during growth on different carbon sources. Deletion of lxr1 does not affect growth on l-arabinose and l-xylulose reductase activity remains unaltered whereas d-mannitol 2-dehydrogenase activities are reduced. We conclude that LXR1 is a d-mannitol 2-dehydrogenase and that a true LXR1 is still awaiting discovery. 相似文献
18.
D-Glucosone 6-phosphate (D-arabino-hexos-2-ulose 6-(dihydrogen phosphate)) was prepared from D-glucosone (D-arabino-hexos-2-ulose) by enzymatic conversion with hexokinase. The isomeric composition of D-glucosone 6-phosphate in aqueous solution was quantitatively determined by NMR spectroscopy and compared to D-glucosone. The main isomers are the alpha-anomer (58%) and the beta-anomer (28%) of the hydrated pyranose form, and the beta-D-fructofuranose form (14%). 相似文献
19.
N-methyl-D-aspartate receptors (NMDARs) play critical roles in excitatory synaptic transmission in the vertebrate central nervous system. NMDARs need D-serine for their channel activities in various brain regions. In mammalian brains, D-serine is produced from L-serine by serine racemase and degraded by D-amino acid oxidase (DAO) to 3-hydroxypyruvate. In avian organs, such as the kidney, in addition to DAO, D-serine is also degraded to pyruvate by D-serine dehydratase (DSD). To examine the roles of these two enzymes in avian brains, we developed a method to simultaneously measure DAO and DSD activities. First, the keto acids produced from D-serine were derivatized with 3-methyl-2-benzothiazolinone hydrazone to stable azines. Second, the azine derivatives were quantified by means of reverse-phase high-performance liquid chromatography using 2-oxoglutarate as an internal standard. This method allowed the simultaneous detection of DAO and DSD activities as low as 100 pmol/min/mg protein. Chicken brain showed only DSD activities (0.4+/-0.2 nmol/min/mg protein) whereas rat brain exhibited only DAO activities (0.7+/-0.1 nmol/min/mg protein). This result strongly suggests that DSD plays the same role in avian brains, as DAO plays in mammalian brains. The present method is applicable to other keto acids producing enzymes with minor modifications. 相似文献
20.
L-Glutamate in the extracellular space regulates endogenous D-aspartate homeostasis in rat pheochromocytoma MPT1 cells 总被引:1,自引:0,他引:1
Adachi M Koyama H Long Z Sekine M Furuchi T Imai K Nimura N Shimamoto K Nakajima T Homma H 《Archives of biochemistry and biophysics》2004,424(1):89-96
In previous studies [FEBS Lett. 434 (1998) 231, Arch. Biochem. Biophys. 404 (2002) 92], we demonstrated for the first time that D-aspartate (D-Asp) is synthesized in cultured mammalian cell lines, such as pheochromocytoma 12 (PC12) and its subclone, MPT1. Our current focus is analysis of the dynamics of D-Asp homeostasis in these cells. In this communication, we show that L-glutamate (Glu) and L-Glu transporter substrates in the extracellular space regulate the homeostasis of endogenous D-Asp in MPT1 cells. D-Asp is apparently in dynamic homeostasis, whereby endogenous D-Asp is constantly released into the extracellular space by an undefined mechanism, and continuously and intensively taken up into cells by an L-Glu transporter. Under these conditions, L-Glu and its transporter substrates in the medium may competitively inhibit the uptake of D-Asp via the transporter, resulting in accumulation of the amino acid in the extracellular space. We additionally demonstrate that DL-TBOA, a well-established L-Glu transporter inhibitor, is taken up by the transporter during long time intervals, but not on a short time-scale. 相似文献