首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This minireview specifically focuses on recent studies carried out on structural aspects of metal-free metallothionein (MT), the mechanism of metal binding for copper and arsenic, structural studies using x-ray absorption spectroscopy and molecular mechanics modeling, and speciation studies of a novel cadmium and arsenic binding algal MT. Molecular mechanics-molecular dynamics calculations of apo-MT show that significant secondary structural features are retained by the polypeptide backbone upon sequential removal of the metal ions, which is stabilized by a possible H-bonding network. In addition, the cysteinyl sulfurs were shown to rotate from within the domain core, where they are found in the metallated state, to the exterior surface of the domain, suggesting an explanation for the rapid metallation reactions that were measured. Mixing Cu6beta-MT with Cd4alpha-MT and Cu6alpha-MT with Cd3beta-MT resulted in redistribution of the metal ions to mixed metal species in each domain; however, the Cu+ ions preferentially coordinated to the beta domain in each case. Reaction of As3+ with the individual metal-free beta and alpha domains of MT resulted in three As3+ ions coordinating to each of the domains, respectively, in a proposed distorted trigonal pyramid structure. Kinetic analysis provides parameters that allow simulation of the binding of each of the As3+ ions. X-ray absorption spectroscopy provides detailed information about the coordination environment of the absorbing element. We have combined measurement of x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) data with extensive molecular dynamics calculations to determine accurate metal-thiolate structures. Simulation of the XANES data provides a powerful technique for probing the coordination structures of metals in metalloproteins. The metal binding properties of an algal MT, Fucus vesiculosus, has been investigated by UV absorption and circular dichroism spectroscopy and electrospray ionization-mass spectrometry. The 16 cysteine residues of this algal MT were found to coordinate six Cd2+ ions in two domains with stoichiometries of a novel Cd3S7 cluster and a beta-like Cd3S9 cluster.  相似文献   

2.
Structural studies of metal-free metallothionein   总被引:2,自引:0,他引:2  
We report the first molecular dynamics calculations on the structure of metal-free betaalpha recombinant human metallothionein, with comparison to the two isolated fragments, alpha-rhMT and beta-rhMT, starting from a linear synthesized strand as well as a demetallated conformation. Following a 5000 ps MM3/MD calculation, the cysteine side chains were found to populate the outside surface of the metal-free protein, regardless of the initial conformation. The polypeptide backbone adopted a random coil conformation when starting from the linear strand, however, it retained a significant amount of secondary structure when starting from the demetallated conformation. We propose that the inverted cysteinyl sulfur orientation facilitates the binding of the metal ions to form the proteolytically stable, metallated protein.  相似文献   

3.
We investigated the kinetics of nitrilotriacetate (NTA) extraction of Zn2+ from Zn7-metallothionein (MT) and a metal-hybrid derivative, Zn4Ag6MT, in which the Zn2+ and Ag+ ions occupy sites in the C-terminal and N-terminal β domains of the protein, respectively. Biphasic kinetics were observed for Zn7MT under pseudo-first-order conditions. Rate constants were (5.2±0.6)×10−3 and (1.0±0.3)×10−4s−1 in 20 mM phosphate, 100 mM KF, pH 7.5 at 23C. In contrast, Zn4Ag6MT showed a single kinetic step with a rate constant of (2.9±0.4)×10−3s−1. These results indicate that the biphasic reactivity of Zn7MT stems from differential susceptibility of the metal in the two metal–thiolate clusters to removal by competing ligands, with Zn2+ in the more stable -domain cluster reacting faster than that in the less stable β-domain cluster. Such behavior suggests that the structures of the two domains of mammalian MT may have evolved to assure that Cu binding does not compromise the structural characteristics that allow Zn to be rapidly transferred from MT to essential cellular ligands.  相似文献   

4.
Rigby KE  Chan J  Mackie J  Stillman MJ 《Proteins》2006,62(1):159-172
De novo synthesis of metallothionein (MT) initially forms the metal-free protein, which must, in a posttranslational reaction, coordinate metal ions via the cysteine sulfur ligands to form the fully folded protein structure. In this article, we use molecular dynamics (MD) and molecular mechanics (MM) to investigate the metal-dependent folding steps of the individual domains of recombinant human metallothionein (MT). The divalent metals were removed sequentially from the metal-sulfur M4(Scys)11 and M3(Scys)9 clusters within the alpha- and beta- domains of MT, respectively, after protonation of the previously coordinating sulfurs. With each of the four (alpha) or three (beta) sites defined, an order of metal release could be determined on the basis of a comparison of the strain energies for each combination by selecting the lowest energy demetallated conformations. The effect of an additional noninteracting, 34-residue peptide sequence on the demetallation order was assessed when bound to either the N- or C-termini of the individual domain fragments to identify the differences in cluster stability between one- and two-domain proteins. The N-terminal-bound peptide had no effect on the order of metal removal; however, addition to the C-terminus significantly altered the sequence. The number of hydrogen bonds was calculated for each energy-minimized demetallated structure and was increased on metal removal, indicating a possible stabilization mechanism for the protein structure via a hydrogen-bonding network. On complete demetallation, the cysteinyl sulfurs were shown to move to the exterior surface of the peptide chain.  相似文献   

5.
Indispensability of Iron for the Growth of Cultured Chick Cells   总被引:1,自引:0,他引:1  
In order to clarify the role of iron in the growth promoting effect of transferrin (Tf), the effects of the following substances were examined in cultured chick skeletal myogenic cells: transition metal ions (Fe2+, Fe3+, Cr3+, Cu2+, Mn2+, Co2+, Cd2+, Zn2+ and Ni2+), Tf complexes with these metals and metal-free apoTf.
The cells did not grow well when incubated in a culture medium composed of Eagle's minimum essential medium and horse serum. But they grew well in the presence of Fe2+ or Fe3+ (10–100 μM) or iron-bound Tf (10–500 nM) in the medium. None of the transition metal ions other than iron was effective. Neither apoTf nor Tf complexes with these metals showed the growth promoting effect. The generality of the requirement of iron for cell growth was ascertained in the primary culture of other types of chick embryonic cells: fibroblasts, cardiac myocytes, retinal pigment cells and spinal nerve cells.
The results show that iron is one of the indispensable substances for cell growth and suggest that Tf protein plays a role in facilitating the transport of iron into the cells.  相似文献   

6.
The manganese transport regulator (MntR) from Bacillus subtilis binds cognate DNA sequences in response to elevated manganese concentrations. MntR functions as a homodimer that binds two manganese ions per subunit. Metal binding takes place at the interface of the two domains that comprise each MntR subunit: an N-terminal DNA-binding domain and a C-terminal dimerization domain. In order to elucidate the link between metal binding and activation, a crystallographic study of MntR in its metal-free state has been undertaken. Here we describe the structures of the native protein and a selenomethionine-containing variant, solved to 2.8 A. The two structures contain five crystallographically unique subunits of MntR, providing diverse views of the metal-free protein. In apo-MntR, as in the manganese complex, the dimer is formed by dyad-related C-terminal domains that provide a conserved structural core. Similarly, each DNA-binding domain largely retains the folded conformation found in metal bound forms of MntR. However, compared to metal-activated MntR, the DNA-binding domains move substantially with respect to the dimer interface in apo-MntR. Overlays of multiple apo-MntR structures indicate that there is a greater range of positioning allowed between N and C-terminal domains in the metal-free state and that the DNA-binding domains of the dimer are farther apart than in the activated complex. To further investigate the conformation of the DNA-binding domain of apo-MntR, a site-directed spin labeling experiment was performed on a mutant of MntR containing cysteine at residue 6. Consistent with the crystallographic results, EPR spectra of the spin-labeled mutant indicate that tertiary structure is conserved in the presence or absence of bound metals, though slightly greater flexibility is present in inactive forms of MntR.  相似文献   

7.
Thermodynamic analysis of calcium ions binding to human growth hormone (hGH) was done at 27 °C in NaCl solution, 50 mM, using different techniques. The binding isotherm for hGH-Ca2+ was obtained by two techniques of ionmetry, using a Ca2+-selective membrane electrode, and isothermal titration calorimetry. Results obtained by two ionmetric and calorimetric methods are in good agreement. There is a set of three identical and non-interacting binding sites for calcium ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 52 μM and −17.4 kJ/mol, respectively. Temperature scanning UV–vis spectroscopy was applied to elucidate the effect of Ca2+ binding on the protein stability, and circular dichroism (CD) spectroscopy was used to show the structural change of hGH due to the metal ion interaction. Calcium ions binding increase the protein thermal stability by increasing of the alpha helix content as well as decreasing of both beta and random coil structures.  相似文献   

8.
The two-domain (βα) mammalian metallothionein binds seven divalent metals, however, the binding mechanism is not well characterized and recent reports require the presence of the partially metallated protein. In this paper, step-wise metallation of the metal-free, two-domain βα-rhMT and the isolated β-rhMT using Cd(II) is shown to proceed in a noncooperative manner by analysis of electrospray ionization mass spectrometric data. Under limiting amounts of Cd(II), all intermediate metallation states up to the fully metallated Cd3-β-rhMT and Cd7-βα-rhMT were observed. Addition of excess Cd(II), resulted in formation of the supermetallated (metallation in excess of normal levels) Cd4-β- and Cd8-βα-metallothionein species. These data establish that noncooperative cadmium metallation is a property of each isolated domain and the complete two-domain protein. Our data now also establish that supermetallation is a property that may provide information about the mechanism of metal transfer to other proteins.  相似文献   

9.
The interplay between metal binding, carbohydrate binding activity, stability and structure of the lectin from Pterocarpus angolensis was investigated. Removal of the metals leads to a more flexible form of the protein with significantly less conformational stability. Crystal structures of this metal-free form show significant structural rearrangements, although some structural features that allow the binding of sugars are retained. We propose that substitution of an asparagine residue at the start of the C-terminal beta-strand of the legume lectin monomer hinders the trans-isomerization of the cis-peptide bond upon demetallization and constitutes an intramolecular switch governing the isomer state of the non-proline bond and ultimately the lectin phenotype.  相似文献   

10.
11.
The use of different chemically modified cassava waste biomass for the enhancement of the adsorption of three metal ions Cd, Cu and Zn from aqueous solution is reported in this paper. Treating with different concentrations of thioglycollic acid modified the cassava waste biomass.

The sorption rates of the three metals were 0.2303 min−1 (Cd2+), 0.0051 min−1 (Cu2+), 0.0040 min−1 (Zn2+) and 0.109 min−1 (Cd2+), 0.0069 min−1 (Cu2+), 0.0367 min−1 (Zn2+) for 0.5 and 1.00 M chemically modified levels, respectively. The adsorption rates were quite rapid and within 20–30 min of mixing, about 60–80% of these ions were removed from the solutions by the biomass and that chemically modifying the binding groups in the biomass enhanced its adsorption capacity towards the three metals. The results further showed that increased concentration of modifying reagent led to increased incorporation, or availability of more binding groups, in the biomass matrix, resulting in improved adsorptivity of the cassava waste biomass. The binding capacity study showed that the cassava waste, which is a serious environmental nuisance, due to foul odour released during decomposition, has the ability to adsorb trace metals from solutions.  相似文献   


12.
The "magic numbers" of metallothionein   总被引:2,自引:0,他引:2  
Metallothioneins (MT) are a family of small cysteine rich proteins, which since their discovery in 1957, have been implicated in a range of roles including toxic metal detoxification, protection against oxidative stress, and as a metallochaperone involved in the homeostasis of both zinc and copper. The most well studied member of the family is the mammalian metallothionein, which consists of two domains: a β-domain with 9 cysteine residues, which sequesters 3 Cd(2+) or Zn(2+) or 6 Cu(+) ions, and an α-domain with 11 cysteine residues and, which sequesters 4 Cd(2+) or Zn(2+) or 6 Cu(+) ions. Despite over half a century of research, the exact functions of MT are still unknown. Much of current research aims to elucidate the mechanism of metal binding, as well as to isolate intermediates in metal exchange reactions; reactions necessary to maintain homeostatic equilibrium. These studies further our understanding of the role(s) of this remarkable and ubiquitous protein. Recently, supermetallated forms of the protein, where supermetallation describes metallation in excess of traditional levels, have been reported. These species may potentially be the metal exchange intermediates necessary to maintain homeostatic equilibrium. This review focuses on recent advances in the understanding of the mechanistic properties of metal binding, the implications for the metal induced protein folding reactions proposed for metallothionein metallation, the value of "magic numbers", which we informally define as the commonly determined metal-to-protein stoichiometric ratios and the significance of the new supermetallated states of the protein and the possible interpretation of the structural properties of this new metallation status. Together we provide a commentary on current experimental and theoretical advances and frame our consideration in terms of the possible functions of MT.  相似文献   

13.
The conformational change and associated aggregation of beta amyloid (Abeta) with or without metals is the main cause of Alzheimer's disease (AD). In order to further understand the effects of Abeta and its associated metals on the aggregation mechanism, the influence of Abeta conformation on the metal affinity and aggregation was investigated using circular dichroism (CD) spectroscopy. The Abeta conformation is dependent on pH and trifluoroethanol (TFE). The binding of metals to Abeta was found to be dependent on the Abeta conformation. The aggregation induced by Abeta itself or its associated metals is completely diminished for Abeta in 40% TFE. Only in 5% and 25% TFE can Abeta undergo an alpha-helix to beta-sheet aggregation, which involve a three-state mechanism for the metal-free state, and a two-state transition for the metal-bound state, respectively. The aggregation-inducing activity of metals is in the order, Cu2+ > Fe3+ > or = Al3+ > Zn2+.  相似文献   

14.
The effect of several metal ions on NADP+-malic enzyme (EC 1.1.1.40) purified from Zea mays L. leaves was studied Mg2+, Mn2+, Co2+ and Cd2+ were all active metal cofactors. The malic enzyme from maize has a moderately high intrinsic preference for Mn2+ relative to Mg2+ at pH 7.0 and 8.0 Negative cooperativity detected in the binding of Mg2+ at pH 7.0 and 8.0 and in the binding of Mn2+ at pH 7.0 suggests the existence of at least two binding sites with different affinity. All of the activating metal ions have preference for octahedral coordination geometry and have ionic radii of 0.86–1.09 Å. The ions that act as inhibitors are outside this range and/or are incapable of octahedral coordination. Ba2+, Sr2+, Cd2+, Ca2+, Be2+, Ni2+, Cu2+, Zn2+, Co2+, Hg2+ showed mixed-type inhibition. The reciprocal of their K1 values follow the order of their apparence in the Irving-Williams series of stability that derives in part from size effects. It is suggested that the size of the ions may play a partial role in determining the strength of the metal interaction.  相似文献   

15.
为了探明褪黑素(MT)和钙离子(Ca2+)在调控植物耐热性中是否存在互作关系,以黄瓜幼苗为试材,分析了内源MT和Ca2+对高温胁迫的响应;并通过叶面喷施100 μmol·L-1 MT、10 mmol·L-1 CaCl2、3 mmol·L-1乙二醇二乙醚二胺四乙酸(EGTA,Ca2+螯合剂)+100 μmol·L-1 MT、0.05 mmol·L-1氯丙嗪(钙调素拮抗剂,CPZ)+100 μmol·L-1 MT、100 μmol·L-1氯苯丙氨酸(p-CPA,MT合成抑制剂)+10 mmol·L-1 CaCl2和去离子水(H2O),研究高温下(42/32 ℃)外源MT和Ca2+对黄瓜幼苗活性氧积累、抗氧化系统及热激转录因子(HSF)和热激蛋白(HSPs)等的影响。结果表明: 黄瓜幼苗内源MT和Ca2+均受高温胁迫诱导;外源MT可上调常温下钙调素蛋白(CaM)、钙依赖蛋白激酶(CDPK5)、钙调磷酸酶B类蛋白(CBL3)、CBL结合蛋白激酶(CIPK2)mRNA表达;CaCl2处理的MT合成关键基因色氨酸脱羧酶(TDC)、5-羟色胺-N-乙酰转移酶(SNAT)和N-乙酰-5-羟色胺甲基转移酶(ASMT)水平也显著升高,MT含量快速增加。MT和CaCl2可显著增强高温下黄瓜的抗氧化能力,减少活性氧(ROS)积累,同时上调HSF7HSP70.1HSP70.11 mRNA表达,从而减轻高温胁迫引起的过氧化伤害,植株热害症状明显减轻,热害指数和电解质渗漏率显著降低。加入EGTA和CPZ后,MT对黄瓜幼苗抗氧化能力和热激蛋白表达的促进效应明显减弱,Ca2+对高温下黄瓜幼苗过氧化伤害的缓解效应也被p-CPA逆转。可见,MT和Ca2+均可诱导黄瓜幼苗的耐热性,二者在热胁迫信号转导过程中存在互作关系。  相似文献   

16.
Abstract: Binding of [3H]-[3-Me-His2]thyrotropin-releasing hormone ([3H]MeTRH) to TRH receptors in rat amygdala was decreased by sulfhydryl reagents in a time-, temperature-, and concentration-dependent manner. A pronounced reduction in receptor density, with little or no change in binding affinity, was apparent following disulfide bond reduction by dithiothreitol (DTT), alkylation of thiol groups by N -ethylmaleimide (NEM), and their oxidation by 5,5'-dithiobis (2-nitrobenzoic acid). Heavy metals (Cd2+, Hg2+), which complex with reactive -SH residues, also potently inhibited binding. The pharmacological specificity of residual [3H]MeTRH binding in chemically modified amygdala membranes was the same as that in control preparations. Sequential exposure to thiol reagents, in the presence or absence of cations, revealed possible additive effects. Pretreatment of membranes with TRH (10--8--10--6 M ), and its continued presence during modification, afforded protection against DTT and NEM. These results indicate the possible importance of thiol groups in the maintenance of TRH receptor conformation.  相似文献   

17.
The influence of co-cations (cadmium, copper, cobalt and nickel) on lead and zinc biosorption by Streptoverticillium cinnamoneum and Penicillium chrysogenum in binary and multimetal systems was evaluated. The metal sorption capacity of S. cinnamoneum was higher than P. chrysogenum for all the metals tested. Both the biomasses exhibited preferential uptake of lead in a multimetal situation. Even though mutual inhibition was seen for all binary systems containing zinc, systems containing lead exhibited unequal inhibition. The extent of metal sorption was dependent on metal chemistry, affinity for binding sites and the type of metal binding. In multimetal systems, S. cinnamoneum and P. chrysogenum exhibited preferential sorption orders: Pb2+ > Zn2+=Cu2+ > Cd2+ > Ni2+ > Co2+ and Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Co2+. The order of metal biosorption in a multimetal system could be predicted well on the basis of Langmuir parameters evaluated in binary metal systems.  相似文献   

18.
Ultraviolet difference spectra are produced by the binding of divalent metal ions to metal-free alkaline phosphatase (EC 3.1.3.1). The interaction of the apoprotein with Zn2+, Mn2+, Co2+ and Cd2+, which induce the tight binding of one phosphate ion per dimer, give distinctly different ultraviolet spectra changes from Ni2+ and Hg2+ which do not induce phosphate binding. Spectrophotometric titrations at alkaline pH of various metallo-enzymes reveal a smaller number of ionizable tyrosines and a greater stability towards alkaline denaturation in the Zn2+- and Mn2+-enzymes than in the Ni2+-, Hg2+- and apoenzymes. The Zn2+- and Mn2+-enzymes have CD spectra in the region of the aromatic transitions that are different from the CD spectra of the Ni2+-, Hg2+- and apoenzymes. Modifications of arginines with 2,3-butanedione show that a smaller number of arginine residues are modified in the Zn2+-enzyme than in the Hg2+-enzyme. The presented data indicate that alkaline phosphatase from Escherichia coli must have a well-defined conformation in order to bind phosphate. Some metal ions (i.e. Zn2+, Co2+, Mn2+ and Cd2+), when interacting with the apoenzyme, alter the conformation of the protein molecule in such a way that it is able to interact with substrate molecules, while other metal ions (i.e. Ni2+ and Hg2+) are incapable of inducing the appropriate conformational change of the apoenzyme. These findings suggest an important structural function of the first two tightly bound metal ions in enzyme.  相似文献   

19.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

20.
The roles of metals in the phosphodiester bond cleavage reaction performed by the hammerhead ribozyme are under investigation. In this study, the apparent affinities and the abilities of several different metals to support ribozyme activity are reported. The relative affinities of divalent cations for the hammerhead ribozyme are determined by measuring their ability to release bound Mn2+. The EPR-detected Mn2+ competition studies give an order of apparent affinity of Mn2+ Co2+ Zn2+>Cd2+Mg2+. This ordering generally follows the trend of maximum rates of cleavage determined at pH 7.0, 0.1 M NaCl, and saturating metal concentrations, of Mn2+>Co2+>Cd2+>Mg2+. The maximum rate is observed for Mn2+ under these conditions and may be related to the high affinity, low pKa and low ΔHhyd of this ion. Substitution of phosphorothioates 5′ to each of the nine adenosines in the enzyme strand yields a change in the Mn2+ binding properties of the hammerhead complex. In the phosphorothioate-substituted hammerhead complex, eight to nine Mn2+ bind in two types of classes: ‘type 1’ (n=1±0.3, Kd=1.1±1 μM) and weaker ‘type 2’ (n=7.7±0.3, Kd=125±27 μM). The multiple phosphorothioate substitutions result in the loss of two to three of the higher affinity sites observed in the unmodified ribozyme. Metal competition studies with the phosphorothioate-substituted ribozyme indicate that the relative affinities of the metals are Cd2+>Zn2+>Co2+, Mg2+ with the number of Mn2+ displaced and apparent affinity of the thiophilic Cd2+ most affected by the phosphorothioate substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号