首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Glutathione peroxidase and thioredoxin reductase are selenocysteine-dependent enzymes that protect against oxidative injury. This study examined the effects of dietary selenium on the activity of these two enzymes in rats, and investigated the ability of selenium to modulate myocardial function post ischemia-reperfusion. Male wistar rats were fed diets containing 0, 50, 240 and 1000 microg/kg sodium selenite for 5 weeks. Langendorff perfused hearts isolated from these rats were subjected to 22.5 min global ischemia and 45 min reperfusion, with functional recovery assessed. Liver samples were collected at the time of sacrifice, and heart and liver tissues assayed for thioredoxin reductase and glutathione peroxidase activity. Selenium deficiency reduced the activity of both glutathione peroxidase and thioredoxin reductase systemically. Hearts from selenium deficient animals were more susceptible to ischemia-reperfusion injury when compared to normal controls (38% recovery of rate pressure product (RPP) vs. 47% recovery of RPP). Selenium supplementation increased the endogenous activity of thioredoxin reductase and glutathione peroxidase and resulted in improved recovery of cardiac function post ischemia reperfusion (57% recovery of RPP). Endogenous activity of glutathione peroxidase and thioredoxin reductase is dependent on an adequate supply of the micronutrient selenium. Reduced activity of these antioxidant enzymes is associated with significant reductions in myocardial function post ischemia-reperfusion.  相似文献   

2.
3.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

4.
The metabolic relationships among the antioxidant nutrients selenium, sulfur, and vitamin E are particularly close. Selenium and vitamin E have long been known to spare one another in certain nutritional diseases of animals, and selenium has been considered to have a key antioxidant defense function as a component of glutathione peroxidase. However, the antioxidant role of glutathione peroxidase has been questioned and new proteins containing selenium have been identified: phospholipid hydroperoxide glutathione peroxidase, selenoprotein P, and iodothyronine deiodinase. Glutathione peroxidase activity independent of selenium resides in the glutathione S-transferases. Glutathione participates in both enzymatic and nonenzymatic antioxidant defense systems. Some low-molecular weight selenium compounds (e.g., ebselen) exhibit glutathione peroxidase-like action. Certain low molecular weight thiols decompose peroxides nonenzymatically (e.g., the ovothiols). Murine malaria appears to be a useful experimental model for investigating interrelationships of selenium and vitamin E. Vitamin E deficiency protects against the parasite, especially when the mice are concurrently fed peroxidizable fat such as fish or linseed oils. Selenium deficiency, on the other hand, has little or no protective effect against the parasite. Any practical utility of pro-oxidant diets in combating human malaria remains to be determined.  相似文献   

5.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

6.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

7.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

8.
Hepatic glutathione concentration and glutathione-dependent enzymes, glutathione S-transferase, glutathione peroxidase, and glutathione reductase, are important for protection against toxic compounds. Rats were fed diets containing 4, 7.5, 15, or 45% protein for 2 weeks. Glutathione and cysteine concentrations in rats fed the 4 and 7.5% protein diets were significantly lower (p less than 0.05) than in rats fed the 15 and 45% protein diets. Glutathione S-transferase activity increased with increasing dietary protein. Glutathione peroxidase activity was significantly lower (p less than 0.05) in rats fed 4 and 7.5% protein compared with rats fed 15 and 45% protein, whereas the activity of glutathione reductase was higher in rats fed 4 and 7.5% protein then in rats fed 15 or 45% protein. Dietary sulfur amino acids alone could account for the increase in glutathione concentration resulting from the increase in dietary protein from 7.5 to 15%. The limited availability of glutathione in animals fed the low protein diets could reduce the potential for detoxification of xenobiotics.  相似文献   

9.
After injection with 0.1 mmol diquat/kg body weight, survival time was markedly shorter in Fischer-344 rats fed a purified diet than in rats fed a regular diet, and much more severe hepatotoxicity and nephrotoxicity were observed in the former than in the latter. The longer the feeding period on the purified diet, the shorter the survival time after diquat administration. These results indicate that the purified diet lacked components present in the regular diet that had protective effects against diquat toxicity. These two diets had nearly the same composition and content of vitamins and minerals. We tested the ingredients of the regular diet to determine which ones reduce diquat toxicity. We found that wheat bran had a protective effect, but that rice bran and bean-curd refuse (okara) did not.  相似文献   

10.
This study was to determine if cellular glutathione peroxidase (GPX1) protects against acute oxidative stress induced by diquat. Lethality and hepatic biochemical indicators in GPX1 knockout mice [GPX1(-/-)] were compared with those of wild-type mice (WT) after an intraperitoneal injection of diquat at 6, 12, 24, or 48 mg/kg of body weight. Although the WT survived all the doses, the GPX1(-/-) survived only 6 mg diquat/kg and were killed by 12, 24, and 48 mg diquat/kg at 52, 4.4 and 3.9 hr, respectively. Compared with those of surviving mice that were sacrificed on Day 7, the dead GPX1(-/-) had diquat dose-dependent increases (P < 0.05) in plasma alanine aminotransferase (ALT) activities. The GPX1(-/-) also had higher (P < 0.05) liver carbonyl contents than those of the WT, but the differences were irrespective of diquat doses. Whereas hepatic total GPX and phospholipid hydroperoxide glutathione peroxidase activities or hepatic GPX1 protein was not significantly affected by the diquat treatment, liver thioredoxin reductase and catalase activities were lower (P < 0.05) in the GPX1(-/-) injected with 12 mg diquat/kg than those of other groups. In conclusion, normal GPX1 expression is necessary to protect mice against the lethality, hepatic protein oxidation, and elevation of plasma ALT activity induced by 12-48 mg diquat/kg.  相似文献   

11.
The concentration of lipoperoxides (estimated as thiobarbituric acid-reactive material) and some components of the antioxidant defence system have been compared in various tissues of lean and congenitally obese mice. NADPH-stimulated lipoperoxide generation in vitro was significantly higher in microsomes (microsomal fractions) prepared from obese hepatic tissue than lean. Plasma, liver and brain lipoperoxide concentration was significantly higher in obese mice. In blood derived from obese mice the concentration of non-enzymic antioxidants including caeruloplasmin and vitamin A was higher, but hepatic retinol concentration was lower in these animals. In all the tissues assayed the glutathione peroxidase activity against H2O2 was less than its activity against cumene hydroperoxide. Assayed with either substrate, glutathione peroxidase activity was significantly higher in the brain and blood of obese mice than their lean counterparts. Conversely, liver glutathione peroxidase was decreased in obese animals, representing 43% of the activity of the lean-mouse liver enzyme against H2O2 and 81% of the cumene hydroperoxide-reducing activity. The liver of obese mice had significantly less, and the kidneys more, oxidized glutathione than the corresponding tissues of lean mice. Further investigations on hepatic tissue indicated that glutathione reductase activity was lower in the obese animals, but there was no significant difference between glucose-6-phosphate dehydrogenase activity in obese and lean mice.  相似文献   

12.
The effect of 3,4-di(OH)-phenylpropionic acid (L-phenylalanine methyl ester) amide (SL-1063), a synthetic derivative of 3,4-di(OH)-cinnamate, on the cholesterol metabolism and antioxidant enzyme system was examined in rats. Diets that included either SL-1063 (0.046%, w/w) or lovastatin (0.02%, w/w) as a supplement, plus 1 g cholesterol/100 g diet were fed to rats ad libitum for 5 weeks. The total plasma cholesterol and triglyceride levels were significantly lowered by the SL-1063 supplement compared to the control group. Meanwhile, the levels of plasma HDL-cholesterol and ratio of HDL-cholesterol/total cholesterol (%) were significantly higher in the SL-1063 group than in the control group. However, the lovastatin supplement did not affect the plasma lipid level. The hepatic cholesterol level and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity were significantly lowered in the lovastatin group compared to the SL-1063 group; however, the hepatic triglyceride level did not differ among the groups. The activity of hepatic acyl CoA: cholesterol acyltransferase (ACAT), the enzyme that catalyzes hepatic cholesterol esterification, was significantly lower in the lovastatin and SL-1063 groups than in the control group. Furthermore, the SL-1063 supplement elevated the excretion of fecal sterols. As regards the hepatic antioxidant enzyme system, the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activities were all significantly higher in the SL-1063 group compared to the control group, whereas only the GR activity was significantly increased by the lovastatin supplement. No marked difference in the GSH levels and glucose-6-phosphate dehydrogenase (G6PD) activities was observed among the groups. The levels of plasma and hepatic thiobarbituric acid reactive substances (TBARS) were lowered by the SL-1063 supplement compared to the control group. Accordingly, the current results suggest that SL-1063, a synthetic derivative of 3,4-di(OH)-cinnamate, is effective in lowering the plasma lipids and improving the antioxidant enzyme system.  相似文献   

13.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

14.
Corticosteroids are anti-inflammatory drugs that are similar to the natural corticosteroid hormones produced by the cortex of the adrenal glands. The objective of this study was to scrutinize effects of some corticosteroids on glucose-6-phosphate dehydrogenase (G6PD) and some antioxidant enzymes. Initially, G6PD was purified from human erythrocytes by using ammonium sulphate precipitation and affinity chromatography. The two drugs, dexamethasone phosphate and prednisolone, investigated on the purified enzyme inhibited the enzyme activity. Comparative in vivo studies were performed to determine the effects of dexamethasone phosphate on the antioxidant enzyme activities using Spraque-Dawley rats. G6PD and catalase (CAT) activities were found significantly lower than in the control, whereas glutathione peroxidase (GP) activity was significantly increased in the erythrocytes of rats the receiving drug; glutathione reductase (GR) activity was unaffected. The results imply that dexamethasone phosphate may affect oxidative stress by changing antioxidant enzyme activities.  相似文献   

15.
Treatment with antioxidants may act more effectively to alter markers of free radical damage in combinations than singly. This study has determined whether treatment with combinations of pycnogenol, beta-carotene, and alpha-lipoic acid was more effective at reducing oxidative stress in diabetic rats than treatment with these antioxidants alone. It is not feasible, based on this study, to assume that there are interactive effects that make combinations of these antioxidants more effective than any one alone to combat oxidative stress. Female Sprague-Dawley rats, normal and streptozotocin-induced diabetic, were treated (10 mg/kg/day ip for 14 days) with pycnogenol, beta-carotene, pycnogenol + beta-carotene, or pycnogenol + beta-carotene + alpha-lipoic acid; controls were untreated. Concentrations of thiobarbituric acid reactive substances, glutathione and glutathione disulfide, and activities of glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase were measured in liver, kidney, and heart. Four types of effects were observed: (1) treatment with beta-carotene alone either reversed (cardiac glutathione disulfide) or elevated (cardiac glutathione, hepatic glutathione peroxidase activity) levels seen in diabetic animals; (2) beta-carotene alone produced no effect, but pycnogenol both alone and in combinations elevated (renal glutathione peroxidase and glutathione reductase activities, hepatic glutathione reductase activity and glutathione disulfide) or depressed (cardiac glutathione disulfide) levels seen in untreated diabetic animals; (3) all treatments with antioxidants, either alone or in combination, either normalized (lipid peroxidation in all tissues), elevated (hepatic GSH, cardiac glutathione peroxidase activity), or had no effect on (activities of hepatic catalase and superoxide dismutase in all tissues) levels seen in diabetic animals; (4) in only one case (cardiac glutathione reductase activity) levels in diabetic animals treated with combinations of antioxidants were normal, but elevated in animals treated with either antioxidant alone. Antioxidant effects seem to be dependent on the nature of the antioxidant used and not on combination effects.  相似文献   

16.
Diquat administration produces hepatic necrosis in male Fischer-344 rats, and minimally in male Sprague-Dawley rats, with massive oxidant stress observable in both strains as evidenced by increased biliary efflux of glutathione disulfide (GSSG). Pretreatment of both strains of rats with 80 mg/kg of 1,3-bis(2-chloroethyl)-N-nitrosourea (BCNU) inhibited hepatic glutathione reductase by 75 percent and increased dramatically the biliary efflux of GSSG produced by administration of diquat. BCNU pretreatment markedly potentiated diquat hepatotoxicity in the Fischer rats and modestly in Sprague-Dawley rats. BCNU-pretreated Fischer rats did not show an enhanced depletion of nonprotein sulfhydryls in response to diquat, in spite of the dramatic potentiation of the hepatic necrosis produced, nor were protein thiols depleted. The effects of BCNU on diquat hepatotoxicity in the Fischer rat are consistent with a critical role for reactive oxygen species in the pathogenesis of the observed hepatic necrosis and for the protective role of the glutathione peroxidase/reductase system. The data suggest that shifts in thiol-disulfide equilibria are not responsible for the cell death produced by oxidant stress in vivo, but are consistent with a role for lipid peroxidation in the pathogenesis of the lesion.  相似文献   

17.
18.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

19.
Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly decreased hepatic MDA as well as GPx and GR activities in plant-treated rats. Based on our data, it can be concluded that N. officinale has a high hypolipidaemic activity and this may be attributed to its antioxidative potential.  相似文献   

20.
Sulforaphane (SF), a glucosinolate-derived isothiocyanate found in cruciferous vegetables, is considered an anticarcinogenic component in broccoli. Sulforaphane induces a battery of detoxification enzymes, including quinone reductase (QR). Induction is thought to be mediated through a common regulatory region termed the antioxidant response element (ARE). To test the hypothesis that the antioxidant selenoprotein thioredoxin reductase (TR) may be induced as part of this coordinated host-defense response to dietary anticarcinogenic compounds, TR activity was measured in livers of rats pair-fed diets containing SF and/or broccoli (n = 6/group). At the doses used, neither SF nor broccoli alone significantly elevated TR activity, whereas treatments containing both broccoli and SF caused a significant increase in TR activity. Glutathione peroxidase (GSH-Px), a second selenium-dependant enzyme with antioxidant activity, was downregulated in rats fed both SF and broccoli, compared to the control diet.A second experiment, using mouse hepatoma Hepa1c1c7 cells, tested whether an interaction exists between selenium (Se) and SF in TR inducibility, since Se is known to induce TR activity. Selenium (2.5 &mgr;M) plus SF (2.0 &mgr;M) caused significantly greater TR activity than either treatment alone. All treatments with added Se or SF caused significantly greater TR activities than no Se or SF treatment. Glutathione peroxidase activity was elevated by Se, but not by SF. These data suggest that TR, known to be regulated by Se, is also upregulated as part of a host response to the dietary anticarcinogen SF, a trait not shared by another Se-dependent enzyme, GSH-Px.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号