首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
The occurrence and distribution of renin was investigated in meso- and metanephric kidneys of pig embryos in various gestational stages. The immunohistochemical peroxidase-antiperoxidase-method (PAP) was used on paraffin sections after application of an antiserum against mouse renin which cross reacts with pig renin. Renin immunoreactivity was already found in the mesonephros of 21 day pig embryos (crown-rump(CR)-length 12 mm) with the strongest reaction in the media of the juxtaglomerular afferent arteriole. Efferent vessels, mesonephric arteries, and the aortic wall also contained scattered renin-positive cells. In the definitive kidney, renin was not detected prior to the 25 mm CR-length-stage. In 45 mm embryos, immunocytochemical staining was observed not only in the media of kidney arteries and arterioles, but also in proximal tubules after pinocytic absorption of filtered renin. TEM-studies revealed that the media of both the mesonephric and the developing metanephric arteries and arterioles contains epithelioid cells whose ultrastructure is very similar to that of renin-producing cells in the adult organ. The observed distribution of renin-producing cells along the entire renal arterial tree points to the possibility that the major function of the renin-angiotensin system in the fetal animal is to participate in the stabilization of renal perfusion pressure.  相似文献   

2.
Summary The occurrence and distribution of renin was investigated in meso- and metanephric kidneys of pig embryos in various gestational stages. The immunohistochemical peroxidase-antiperoxidase-method (PAP) was used on paraffin sections after application of an antiserum against mouse renin which cross reacts with pig renin. Renin immunoreactivity was already found in the mesonephros of 21 day pig embryos (crown-rump(CR)-length 12 mm) with the strongest reaction in the media of the juxtaglomerular afferent arteriole. Efferent vessels, mesonephric arteries, and the aortic wall also contained scattered renin-positive cells. In the definitive kidney, renin was not detected prior to the 25 mm CR-length-stage. In 45 mm embryos, immunocytochemical staining was observed not only in the media of kidney arteries and arterioles, but also in proximal tubules after pinocytic absorption of filtered renin. TEM-studies revealed that the media of both the mesonephric and the developing metanephric arteries and arterioles contains epithelioid cells whose ultrastructure is very similar to that of renin-producing cells in the adult organ. The observed distribution of renin-producing cells along the entire renal arterial tree points to the possibility that the major function of the renin-angiotensin system in the fetal animal is to participate in the stabilization of renal perfusion pressure.  相似文献   

3.
Cell type-specific expression of the human renin gene.   总被引:2,自引:0,他引:2  
We have previously produced transgenic mice carrying the human renin gene, whose expression is regulated in a tissue-specific manner. In the present study, we further characterized expression of the transgene. Northern blot analysis showed that the human renin gene is expressed in the kidney but not in the liver of two lines of transgenic mice with 10 and 50 copies of the transgene, suggesting that the integrated copy number of the human renin gene does not influence the dominant-renal expression pattern. Immunohistochemical study using a monoclonal antibody specific for human renin demonstrated that expression of human renin in the transgenic mouse kidney is confined to the epithelioid juxtaglomerular cells. Transfection experiments indicated that the chloramphenicol acetyltransferase fusion gene containing the 3-kb upstream sequences of the renin gene is activated only in human epithelioid embryonic 293 cells derived from kidney but not in human HepG2 cells from liver. These findings suggest that transfer of the cloned renin gene into mice and in vitro cultured cell lines can give rise to cell type-specific expression.  相似文献   

4.
Previous studies have shown that intrauterine growth restriction (IUGR) can impair nephrogenesis, but uncertainties remain about the importance of the gestational timing of the insult and the effects on the renal renin-angiotensin system (RAS). We therefore hypothesized that induction of IUGR during late gestation alters the RAS, and this is associated with a decrease in nephron endowment. Our aims were to determine the effects of IUGR induced during the later stages of nephrogenesis on 1) nephron number; 2) mRNA expression of angiotensin AT(1) and AT(2) receptors, angiotensinogen, and renin genes in the kidney; and 3) the size of maculae densae. IUGR was induced in fetal sheep (n = 7) by umbilical-placental embolization from 110 to 130 days of the approximately 147-day gestation; saline-infused fetuses served as controls (n = 7). Samples of cortex from the left kidney were frozen, and the right kidney was perfusion fixed. Total kidney volume, nephron number, renal corpuscle volume, total maculae densae volume, and the volume of macula densa per glomerulus were stereologically estimated. mRNA expression of AT(1) and AT(2) receptors, angiotensinogen, and renin in the renal cortex was determined. In IUGR fetuses at 130 days, body and kidney weights were significantly reduced and nephron number was reduced by 24%. There was no difference in renin, angiotensinogen, or AT(1) and AT(2) receptor mRNA expression levels in the IUGR kidneys compared with controls. We conclude that fetal growth restriction late in nephrogenesis can lead to a marked reduction in nephron endowment but does not affect renal corpuscle or macula densa size, or renal RAS gene expression.  相似文献   

5.
The salt intake of an organism controls the number of renin-producing cells in the kidney by yet undefined mechanisms. This study aimed to assess a possible mediator role of preglomerular blood pressure in the control of renin expression by oral salt intake. We used wild-type (WT) mice and mice lacking angiotensin II type 1a receptors (AT(1a)-/-) displaying an enhanced salt sensitivity to renin expression. In WT kidneys, we found renin-expressing cells at the ends of all afferent arterioles. A low-salt diet (0.02%) led to a moderate twofold increase in renin-expressing cells along afferent arterioles. In AT(1a)-/- mice, lowering of salt content led to a 12-fold increase in renin expression. Here, the renin-expressing cells were distributed along the preglomerular vascular tree in a typical distal-to-proximal distribution gradient which was most prominent at high salt intake and was obliterated at low salt intake by the appearance of renin-expressing cells in proximal parts of the preglomerular vasculature. While lowering of salt intake produced only a small drop in blood pressure in WT mice, the marked reduction of systolic blood pressure in AT(1a)-/- mice was accompanied by the disappearance of the distribution gradient from afferent arterioles to arcuate arteries. Unilateral renal artery stenosis in AT(1a)-/- mice on a normal salt intake produced a similar distribution pattern of renin-expressing cells as did low salt intake. Conversely, increasing blood pressure by administration of the NOS inhibitor N-nitro-l-arginine methyl ester or of the adrenergic agonist phenylephrine in AT(1a)-/- mice kept on low salt intake produced a similar distribution pattern of renin-producing cells as did normal salt intake alone. These findings suggest that changes in preglomerular blood pressure may be an important mediator of the influence of salt intake on the number and distribution of renin-producing cells in the kidney.  相似文献   

6.
7.
Our previous studies showed that stimulation of adenosine A(1) receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A(1) adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A(1) adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A(1) adenosine receptor stimulation [N(6)-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V(1) vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A(1) adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction.  相似文献   

8.
We previously found that deletion of connexin 40 (Cx40) causes a misdirection of renin-expressing cells from the media layer of afferent arterioles to the perivascular tissue, extraglomerular mesangium, and periglomerular and peritubular interstitium. The mechanisms underlying this aberrant renin expression are unknown. Here, we questioned the relevance of cyclooxygenase-2 (COX-2) activity for aberrant renin expression in Cx40-deficient kidneys. We found that COX-2 mRNA levels were increased three-fold in the renal cortex of Cx40-deficient kidneys relative to wild-type (wt) kidneys. In wt kidneys, COX-2 immunoreactivity was minimally detected in the juxtaglomerular region, but renin expression was frequently associated with COX-2 immunoreactivity in Cx40-deficient kidneys. Treatment with COX-2 inhibitors for 1 wk lowered renin mRNA levels in wt kidneys by about 40%. In Cx40-deficient kidneys, basal renin mRNA levels were increased two-fold relative to wt kidneys, and these elevated mRNA levels were reduced to levels of untreated wt mice by COX-2 inhibitors. In parallel, renin immunoreactive areas were clearly reduced by COX-2 inhibitors such that renin expression vanished and decreased significantly in the periglomerular and peritubular extensions. Notably, COX-2 inhibitor treatment lowered plasma renin concentration (PRC) in wt kidneys by about 40% but did not affect the highly elevated PRC levels in Cx40-deficient mice. These findings suggest that aberrant renin-producing cells in Cx40-deficient kidneys express significant amounts of COX-2, which contribute to renin expression in these cells, in particular, those in the periglomerular and peritubular position. Apparently, these disseminated cells do not contribute to the enhanced renin secretion rates of Cx40-deficient kidneys.  相似文献   

9.
The renin-angiotensin system was studied in experimental renal hypertension produced by ligation of the poles of the left kidney followed by contralateral nephrectomy. Plasma renin concentration of renin substrate was lower and that of angiotensin I converting enzyme was higher in hypertensive animals. The juxtaglomerular index decreased in the medial zone of the kidney, while heavily granulated areas appeared in the poles. Ligated kidneys of rats that remained normotensive showed juxtaglomerular indices intermediate between the control and the hypertensive rats. Differences in renal renin content between the groups correspond to those for the juxtaglomerular index, but were smaller. No differences between the experimental groups were observed in iso-renin content in the brain; however in all animals with ligated kidney poles, hypertensive or normotensive, there was a tendency for iso-renin in the adrenals, left ventricular myocardium, and especially aorta to be lower than in controls.  相似文献   

10.
The important cardiovascular regulator renin contains a strong in vitro enhancer 2.7 kb upstream of its gene. Here we tested the in vivo role of the mouse Ren-1c enhancer. In renin-expressing As4.1 cells stably transfected with Ren-1c promoter with or without enhancer, expression of linked beta-geo reporter, stable expression, and colony formation were dependent on the presence of the enhancer. We then generated mice carrying a targeted deletion of the enhancer (REKO mice) and found marked depletion of renin in renal juxtaglomerular and submandibular ductal cells, as well as hyperplasia of macula densa cells. Plasma creatinine was increased, but electrolytes were normal. Male REKO mice implanted with telemetry devices had 9 +/- 1 mm Hg lower mean arterial pressure (p < 0.001), which was partly normalized by a high NaCl diet. Locomotor activity was lower, and baroreflex sensitivity was normal. Markedly reduced mean arterial pressure variability in the midfrequency band indicated a contribution of reduced sympathetic vasomotor tone to the hypotension. In conclusion, the renin enhancer is critical for renin gene expression and physiological sequelae, including response to alteration in salt intake. The REKO mouse may be useful as a low renin expression model.  相似文献   

11.
12.
The present study was performed to determine the influence of absence of angiotensin type 1A (AT(1A)) and/or AT(1B) receptor feedback regulation of kidney neuronal nitric oxide synthase (nNOS) and renin protein expression. Kidneys were harvested from wild-type (WT), AT(1A)(-/-), AT(1B)(-/-), and AT(1A)(-/-)AT(1B)(-/-) mice and immunostained for nNOS and renin protein localization. AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) kidneys demonstrated an increase in the percentage of glomeruli with nNOS-positive afferent and interlobular arterioles compared with WT mice. Density of vascular nNOS immunostaining was 20-fold higher in kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) compared with WT mice. Density of macula densa nNOS immunostaining was 7-fold higher in AT(1A)(-/-)AT(1B)(-/-) than in WT mice. Percent of glomeruli positive for juxtaglomerular (JG) cell renin was 3-fold higher, whereas the density of JG cell renin immunostaining was 15-fold higher in kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) compared with WT mice. Kidneys of AT(1A)(-/-) and AT(1A)(-/-)AT(1B)(-/-) mice displayed recruitment of renin protein expression along afferent and interlobular arterioles. Absence of AT(1) receptor signaling resulted in enhanced nNOS protein expression in both microvascular and tubular structures. Enhanced NO generation may contribute to the reduced renal vascular tone and blood pressure observed with blockade of the renin-angiotensin system.  相似文献   

13.
14.
15.
Genetic dissection of cadherin function during nephrogenesis   总被引:5,自引:0,他引:5       下载免费PDF全文
The distinct expression of R-cadherin in the induced aggregating metanephric mesenchyme suggests that it may regulate the mesenchymal-epithelial transition during kidney development. To address whether R-cadherin is required for kidney ontogeny, R-cadherin-deficient mice were generated. These mice appeared to be healthy and were fertile, demonstrating that R-cadherin is not essential for embryogenesis. The only kidney phenotype of adult mutant animals was the appearance of dilated proximal tubules, which was associated with an accumulation of large intracellular vacuoles. Morphological analysis of nephrogenesis in R-cadherin(-/-) mice in vivo and in vitro revealed defects in the development of both ureteric bud-derived cells and metanephric mesenchyme-derived cells. First, the morphology and organization of the proximal parts of the ureteric bud epithelium were altered. Interestingly, these morphological changes correlated with an increased rate of apoptosis and were further supported by perturbed branching and patterning of the ureteric bud epithelium during in vitro differentiation. Second, during in vitro studies of mesenchymal-epithelial conversion, significantly fewer epithelial structures developed from R-cadherin(-/-) kidneys than from wild-type kidneys. These data suggest that R-cadherin is functionally involved in the differentiation of both mesenchymal and epithelial components during metanephric kidney development. Finally, to investigate whether the redundant expression of other classic cadherins expressed in the kidney could explain the rather mild kidney defects in R-cadherin-deficient mice, we intercrossed R-cadherin(-/-) mice with cadherin-6(-/-), P-cadherin(-/-), and N-cadherin(+/-) mice. Surprisingly, however, in none of the compound knockout strains was kidney development affected to a greater extent than within the individual cadherin knockout strains.  相似文献   

16.
The ionophore A23187 evoked a dose-dependent release of renin from the isolated perfused cat kidney, which was inhibited by calcium deprivation and adrenergic blockade. The latter finding indicates that the effects of A23187 on the intact kidney are mediated mainly by catecholamine release from sympathetic nerve endings. Ionophore also elicited a concentration-dependent enhancement of renin secretion from a pure preparation of glomeruli isolated from cat kidney; this stimulation was still manifest when the glomeruli were superfused with a calcium-free solution. These findings indicate that A23187 evokes renin secretion from juxtaglomerular cells by mobilizing cellular calcium and support the view that an increase in intracellular calcium is intimately involved in the mechanism of renin secretion.  相似文献   

17.
We have shown that microRNAs (miRNAs) are necessary for renin cell specification and kidney vascular development. Here, we used a screening strategy involving microarray and in silico analyses, along with in situ hybridization and in vitro functional assays to identify miRNAs important for renin cell identity. Microarray studies using vascular smooth muscle cells (SMCs) of the renin lineage and kidney cortex under normal conditions and after reacquisition of the renin phenotype revealed that of 599 miRNAs, 192 were expressed in SMCs and 234 in kidney cortex. In silico analysis showed that the highly conserved miR-330 and miR-125b-5p have potential binding sites in smoothelin (Smtn), calbindin 1, smooth muscle myosin heavy chain, α-smooth muscle actin, and renin genes important for the myoepithelioid phenotype of the renin cell. RT-PCR studies confirmed miR-330 and miR-125b-5p expression in kidney and SMCs. In situ hybridization revealed that under normal conditions, miR-125b-5p was expressed in arteriolar SMCs and in juxtaglomerular (JG) cells. Under conditions that induce reacquisition of the renin phenotype, miR-125b-5p was downregulated in arteriolar SMCs but remained expressed in JG cells. miR-330, normally absent, was expressed exclusively in JG cells of treated mice. In vitro functional studies showed that overexpression of miR-330 inhibited Smtn expression in SMCs. On the other hand, miR-125b-5p increased Smtn expression, whereas its inhibition reduced Smtn expression. Our results demonstrate that miR-330 and miR-125b-5p are markers of JG cells and have opposite effects on renin lineage cells: one inhibiting and the other favoring their smooth muscle phenotype.  相似文献   

18.
Human renin gene of renin-secreting tumor   总被引:2,自引:0,他引:2  
  相似文献   

19.
The correlation between juxtaglomerular index, kidney renin content, and plasma renin concentration has been investigated in rats. The results indicate that renin exists in two forms. When determining the renin content of the kidney, the renin actually present in the modified smooth muscle cells of the juxtaglomerular apparatus is measured; this is called bound renin. The amount of bound renin is derived from the total of granular and subgranular renin in the modified smooth muscle cells. Since JGI and KRCont show a significant positive correlation in untreated adult rats, it is assumed that in such animals the ratio of granular and subgranular renin is constant. Since no correlation could be demonstrated between kidney renin content and PRC in untreated adult rats, and JGI and KRCont did not change parallel with the increase of PRC in numerous experimental conditions, it is assumed that part of the renin synthetized in the JG cells is secreted directly, without passing the process of condensation into membrane bound granules. This mobile renin does not significantly affect the renin content and the JGI of the kidney. Under physiological circumstances, most of the produced renin seems to mature to granules in the modified smooth muscle cells before being secreted. When renin production and release increased, maturation to granules may be inhibited, a significant part of the produced renin released by direct secretion, and the subgranular, immature renin may also be secreted.  相似文献   

20.
The effect of thyroid hormone on renin productiona and release by rat kidney slices was studied. Rat kidney slices were incubated in Warburg flasks containing Krebs-Ringer-Phosphate- Glucose- Dextran solution at 37 C for 5 hours. Renin content, renin released into the incubation media and oxygen consumption were measured. Kidney slices actively secreted renin. Kidney slices of hyperthyroid rats released more renin, and kidney slices of hypothyroid rats released less renin than normal kidneys (p less than 0.001). The addition of 1-thyroxine to the incubation medium increased significantly (p less than 0.001) renin release by kidney slices from normal and hypothyroid rats. Thyroid hormone affects renin release through a mechanism independent of the ouabain-sensitive sodium pump and protein synthesis, since ouabain and cycloheximide did not modify renin release or production. The results of this study suggest that thyroid hormone plays a role in renin release from the juxtaglomerular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号