首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. The GABAergic system is indispensable for maintaining the balance between excitation and inhibition (E/I balance) required for normal neural circuit function. E/I imbalances that result from perturbations in the development of this system, ranging from the generation of inhibitory neurons to the formation of their synaptic connections, have been implicated in several neurodevelopmental disorders. In this review, we discuss how impairments at different stages in GABAergic development can lead to disease states. We also highlight recent studies which show that modulation of the GABAergic system can successfully reverse cognitive deficits in disease models and suggest that therapeutic strategies targeting the GABAergic system could be effective in treating neurodevelopmental disorders.  相似文献   

2.
Aging of the brain is characterized by several neurochemical modifications involving structural proteins, neurotransmitters, neuropeptides and related receptors. Alterations of neurochemical indices of synaptic function are indicators of age-related impairment of central functions, such as locomotion, memory and sensory performances. Several studies demonstrate that ionotropic GABA receptors, glutamate decarboxylase (GAD), and somatostatinergic subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Additionally, levels of several neuropeptides co-expressed with GAD decrease during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in GABA inhibitory neurotransmission. In this study, we showed that chronic supplementation of taurine to aged mice significantly ameliorated the age-dependent decline in spatial memory acquisition and retention. We also demonstrated that concomitant with the amelioration in cognitive function, taurine caused significant alterations in the GABAergic and somatostatinergic system. These changes included (1) increased levels of the neurotransmitters GABA and glutamate, (2) increased expression of both isoforms of GAD (65 and 67) and the neuropeptide somatostatin, (3) decreased hippocampal expression of the β3 subunits of the GABAA receptor, (4) increased expression in the number of somatostatin-positive neurons, (5) increased amplitude and duration of population spikes recorded from CA1 in response to Schaefer collateral stimulation and (6) enhanced paired pulse facilitation in the hippocampus. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally occurring in the aging brain, suggesting a protective role of taurine in this process. An increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine supplementation might help forestall the age-related decline in cognitive functions through interaction with the GABAergic system.  相似文献   

3.
Ma Y  Hu JH  Zhao WJ  Fei J  Yu Y  Zhou XG  Mei ZT  Guo LH 《Cell research》2001,11(1):61-67
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABA(A) receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.  相似文献   

4.
R J Marley  J M Wehner 《Life sciences》1987,40(23):2215-2224
Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of 3H-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity to 3-mercaptopropionic acid and differential enhancement of 3H-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of 3H-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.  相似文献   

5.
gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia   总被引:6,自引:0,他引:6  
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.  相似文献   

6.
The nervous system develops through a program that produces neurons in excess and then eliminates approximately half during a period of naturally occurring death. Neuronal activity has been shown to promote the survival of neurons during this period by stimulating the production and release of neurotrophins. In the peripheral nervous system (PNS), neurons depends on neurotrophins that activate survival pathways, which explains how the size of target cells influences number of neurons that innervate them (neurotrophin hypothesis). However, in the central nervous system (CNS), the role of neurotrophins has not been clear. Contrary to the neurotrophin hypothesis, a recent study shows that, in neonatal hippocampus, neurotrophins cannot promote survival without spontaneous network activity: Neurotrophins recruit neurons into spontaneously active networks, and this activity determines which neurons survive. By placing neurotrophin upstream of activity in the survival signaling pathway, these new results change our understanding of how neurotrophins promote survival. Spontaneous, synchronized network activity begins to spread through both principle neurons and interneurons in the hippocampus as they enter the death period. At this stage, neurotransmission mediated by γ-aminobutyric acid (GABA) is excitatory and drives the spontaneous activity. An important recent observation is that neurotrophins preferentially recruit GABAergic neurons into spontaneously active networks; thus, neurotrophins select for survival only those neurons joined to active networks with strong GABAergic inputs, which would later become inhibitory. A proper excitatory/inhibitory (E/I) balance is critical for normal adult brain function. This balance may be especially important in the hippocampus where impairments in E/I balance are associated with pathologies including epilepsy. Here, I discuss the molecular mechanisms for survival in neonatal neurons, how these mechanisms change during development, and how they may be linked to degenerative diseases.  相似文献   

7.
Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis. Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory” roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons, causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level. New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.  相似文献   

8.
Abstract: Various studies suggest that alterations in GABAergic function may be connected to epileptic seizures. Low CSF GABA levels have been reported in epilepsy and also febrile convulsions of children. In this study the pentet-razole seizure threshold of dogs was compared with the concentration of GABA in the CSF and blood plasma. A highly significant positive correlation was found between seizure excitability and CSF GABA level, but not between CSF and plasma GABA concentrations.  相似文献   

9.
Matsumoto N  Noda E  Nabekura J 《Life sciences》2006,79(11):1021-1026
We investigated the effects of metabolic inhibition on both the shift in the equilibrium potential for Cl(-) (E(Cl)) and the run down of GABA(A) receptor responses, using nystatin- and gramicidin-perforated patch-clamp recordings from rat hippocampal CA1 neurons. Metabolic inhibition with NaCN decreased outward GABAergic currents while increasing inward GABAergic currents. E(Cl) showed a positive shift almost immediately after metabolic poisoning. This shift always occurred prior to GABA receptor run down, which was observed as decreases in whole cell conductance during application of a GABA(A) receptor agonist. The results indicate that GABAergic responses tend to become depolarizing during metabolic inhibition and the run down of the GABAergic response may therefore be neuroprotective against excitotoxicity. Furthermore the results illustrate the importance of considering both changes in receptor function and current driving force, and their temporal relationship, in order to understand the physiological response of the GABAergic system during metabolic stress.  相似文献   

10.
In the present study, the distribution of succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) in the hippocampus of the Mongolian gerbil and its association with various sequelae of spontaneous seizure were investigated in order to identify the roles of GABA shunt in the epileptogenesis and the recovery mechanisms in these animals. Both SSADH and SSAR immunoreactivities in the GABAergic neurons were significantly higher in the pre-seizure groups of seizure sensitive (SS) gerbil as compared to those seen in the seizure resistant (SR) gerbils. The distributions of both SSADH and SSAR immunoreactivities in the hippocampus showed significant differences after the on-set of seizure. At 3 h postictal, when compared to the pre-seizure group of SS gerbils, a decline in the immunoreactivities in the perikarya was observed. At 12 h after seizure on-set, the densities of both SSADH and SSAR immunoreactivities were begun to recover to the pre-seizure level of SS gerbils. These results suggest that the GABAergic neurons in the hippocampal complex of the SS gerbil may be highly activated. In addition, the imbalance of GABA shunt expressions in the GABAergic neurons may imply a malfunction of the metabolism of GABAergic neurons in the SS gerbils, and this defect may trigger seizure on-set. Therefore, the initiation of seizure, at least in gerbils, may be the result of a malfunction in GABA shunt in the GABAergic neurons.  相似文献   

11.
It has long been recognized that muscarinic acetylcholine receptors (mAChRs) are crucial for the control of cognitive processes, and drugs that activate mAChRs are helpful in ameliorating cognitive deficits of Alzheimer's disease (AD). On the other hand, GABAergic transmission in prefrontal cortex (PFC) plays a key role in "working memory" via controlling the timing of neuronal activity during cognitive operations. To test whether the muscarinic and gamma-aminobutyric acid (GABA) system are interconnected in normal cognition and dementia, we examined the muscarinic regulation of GABAergic transmission in PFC of an animal model of AD. Transgenic mice overexpressing a mutant gene for beta-amyloid precursor protein (APP) show behavioral and histopathological abnormalities resembling AD and, therefore, were used as an AD model. Application of the mAChR agonist carbachol significantly increased the spontaneous inhibitory postsynaptic current (sIPSC) frequency and amplitude in PFC pyramidal neurons from wild-type animals. In contrast, carbachol failed to increase the sIPSC amplitude in APP transgenic mice, whereas the carbachol-induced increase of the sIPSC frequency was not significantly changed in these mutants. Similar results were obtained in rat PFC slices pretreated with the beta-amyloid peptide (Abeta). Inhibiting protein kinase C (PKC) blocked the carbachol enhancement of sIPSC amplitudes, implicating the PKC dependence of this mAChR effect. In APP transgenic mice, carbachol failed to activate PKC despite the apparently normal expression of mAChRs. These results show that the muscarinic regulation of GABA transmission is impaired in the AD model, probably due to the Abeta-mediated interference of mAChR activation of PKC.  相似文献   

12.
GABA is the main neurotransmitter of the hypothalamic suprachiasmatic nucleus (SCN) and plays a key role in the function of this master circadian pacemaker. Despite the evidence that disturbances of biological rhythms are common during aging, little is known about the GABAergic network in the SCN of the aging brain. We here provide a brief overview of the GABAergic structures and the role of GABA in the SCN. We also review some age-related changes of the GABAergic system occurring in the brain outside the SCN. Finally, we present preliminary data on the GABAergic system within the SCN comparing young and aging mice. In particular, our study on age-related changes in the SCN focused on the daily expression of the alpha3 subunit of the GABA(A) receptor and on the density of GABAergic axon terminals. Interestingly, our preliminary findings point to alterations of the GABAergic network in the biological clock during senescence.  相似文献   

13.
The septal GABAergic system plays a central role in the regulation of activity and excitability of the hippocampus (the main locus of temporal lobe epilepsy, TLE), but the character of changes the septum undergoes in this pathology remains unknown. To address this issue we studied the influences on GABAergic receptors in septal slices from the brain of epileptic guinea pigs compared to a control. In the epileptic brain, the overall increase in the mean frequency of neuronal discharges and the rise in the number of bursting neurons were revealed. The inhibitory action of exogenously applied GABA on neuronal activity is sharply enhanced, whereas the efficacy of action of GABA(A) and GABA(B) receptor blockers decreases, indicating the alteration of intraseptal inhibitory processes in epilepsy. In epilepsy, GABA sharply increases the oscillatory activity of the part of pacemakers, and the opposite effect was observed in the control. In epileptic animals, the GABA receptor blockers did not affect burst neurons, indicating the disturbance of the tonic GABAergic control of the oscillatory activity. Thus, we demonstrated for the first time that the activity of septal neurons and their reactions to GABAergic substances in animals with TLE model changed sharply compared to healthy ones.  相似文献   

14.
Profound alterations in the function of GABA occur over the course of postnatal development. Changes in GABA(A) receptor expression are thought to contribute to these differences in GABAergic function, but how subunit changes correlate with receptor function in individual developing neurons has not been defined precisely. In the current study, we correlate expression of 14 different GABA(A) receptor subunit mRNAs with changes in the pharmacological properties of the receptor in individual hippocampal dentate granule cells over the course of postnatal development in rat. We demonstrate significant developmental differences in GABA(A) receptor subunit mRNA expression, including greater than two-fold lower expression of alpha1-, alpha4- and gamma2-subunit mRNAs and 10-fold higher expression of alpha5-mRNA in immature compared with adult neurons. These differences correlate both with regional changes in subunit protein level and with alterations in GABA(A) receptor function in immature dentate granule cells, including two-fold higher blockade by zinc and three-fold lower augmentation by type-I benzodiazepine site modulators. Further, we find an inverse correlation between changes in GABA(A) receptor zinc sensitivity and abundance of vesicular zinc in dentate gyrus during postnatal development. These findings suggest that developmental differences in subunit expression contribute to alterations in GABA(A) receptor function during postnatal development.  相似文献   

15.
The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1) knockout (KO) mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABAA receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.  相似文献   

16.
Abstract: There is compelling evidence that excessive GABA-mediated inhibition may underlie the abnormal electrical activity, initiated in the thalamus, associated with epileptic absence seizures. In particular, the GABAB receptor subtype seems to play a critical role, because its antagonists are potent inhibitors of absence seizures, whereas its agonists exacerbate seizure activity. Using a validated rat model of absence epilepsy, we have previously found no evidence of abnormal GABAB receptor density or affinity in thalamic tissue. In the present study, we have used in vivo microdialysis to monitor changes in levels of extracellular GABA and other amino acids in this brain region. We have shown that basal extracellular levels of GABA and, to a lesser extent, taurine are increased when compared with values in nonepileptic controls. However, modifying GABAergic transmission with the GABAB agonist (−)-baclofen (2 mg/kg i.p.), the GABAB antagonist CGP-35348 (200 mg/kg i.p.), or the GABA uptake inhibitor tiagabine (100 µ M ) did not produce any further alteration in extracellular GABA levels, despite the ability of these compounds to increase (baclofen and tiagabine) or decrease (CGP-35348) seizure activity. These findings suggest that the increased basal GABA levels observed in this animal model are not simply a consequence of seizure activity but may contribute to the initiation of absence seizures.  相似文献   

17.
Tang ZQ  Lu Y 《PloS one》2012,7(4):e35831
Neurons in the nucleus laminaris (NL) of birds act as coincidence detectors and encode interaural time difference to localize the sound source in the azimuth plane. GABAergic transmission in a number of CNS nuclei including the NL is subject to a dual modulation by presynaptic GABA(B) receptors (GABA(B)Rs) and metabotropic glutamate receptors (mGluRs). Here, using in vitro whole-cell patch clamp recordings from acute brain slices of the chick, we characterized the following important but unknown properties pertaining to such a dual modulation: (1) emergence of functional GABA synapses in NL neurons; (2) the temporal onset of neuromodulation mediated by GABA(B)Rs and mGluRs; and (3) the physiological conditions under which GABA(B)Rs and mGluRs are activated by endogenous transmitters. We found that (1) GABA(A)R-mediated synaptic responses were observed in about half of the neurons at embryonic day 11 (E11); (2) GABA(B)R-mediated modulation of the GABAergic transmission was detectable at E11, whereas the modulation by mGluRs did not emerge until E15; and (3) endogenous activity of GABA(B)Rs was induced by both low- (5 or 10 Hz) and high-frequency (200 Hz) stimulation of the GABAergic pathway, whereas endogenous activity of mGluRs was induced by high- (200 Hz) but not low-frequency (5 or 10 Hz) stimulation of the glutamatergic pathway. Furthermore, the endogenous activity of mGluRs was mediated by group II but not group III members. Therefore, autoreceptor-mediated modulation of GABAergic transmission emerges at the same time when the GABA synapses become functional. Heteroreceptor-mediated modulation appears at a later time and is receptor type dependent in vitro.  相似文献   

18.
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.  相似文献   

19.
Immunocytochemical studies have identified alterations in GABA neurons in several models of seizure disorders. However, the changes have varied among different epilepsy models, and these variations presumably reflect the diversity of mechanisms that can lead to seizure disorders. In models of cortical focal epilepsy, there is strong evidence fordecreases in the number of GABAergic elements, and the changes closely parallel the time course of seizure development. By contrast, in some genetic models of epilepsy,increases in the number of immunocytochemically-detectable neurons have been observed in selected brain regions. In several models of temporal lobe epilepsy, there presently is little immunocytochemical evidence for alterations of GABA neurons within the hippocampal formation despite physiological demonstrations of decreased GABA-mediated inhibition in this region. However, it remains possible that certain types of GABA neurons could be differentially affected in some seizure disorders while other types are preserved. Thus, distinguishing between different classes of GABA neurons and determining their functional roles represent major challenges for future studies of GABA neurons in seizure disorders.Special issue dedicated to Dr. Eugene Roberts.  相似文献   

20.
Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号