首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Day PJ  Pinheiro TJ  Roberts LM  Lord JM 《Biochemistry》2002,41(8):2836-2843
Ricin is a heterodimeric protein toxin in which a catalytic polypeptide (the A-chain or RTA) is linked by a disulfide bond to a cell-binding polypeptide (the B-chain or RTB). During cell entry, ricin undergoes retrograde vesicular transport to reach the endoplasmic reticulum (ER) lumen, from where RTA translocates into the cytosol, probably by masquerading as a substrate for the ER-associated protein degradation (ERAD) pathway. In partitioning studies in Triton X-114 solution, RTA is predominantly found in the detergent phase, whereas ricin holotoxin, native RTB, and several single-chain ribosome-inactivating proteins (RIPs) are in the aqueous phase. Fluorescence spectroscopy and far-UV circular dichroism (CD) demonstrated significant structural changes in RTA as a result of its interaction with liposomes containing negatively charged phospholipid (POPG). These lipid-induced structural changes markedly increased the trypsin sensitivity of RTA and, on the basis of the protein fluorescence determinations, abolished its ability to bind to adenine, the product resulting from RTA-catalyzed depurination of 28S ribosomal RNA. RTA also released trapped calcein from POPG vesicles, indicating that it destabilized the lipid bilayer. We speculate that membrane-induced partial unfolding of RTA during cell entry may facilitate its recognition as an ERAD substrate.  相似文献   

2.
The plant toxin ricin is transported retrogradely from the cell surface to the endoplasmic reticulum (ER) from where the enzymatically active part is retrotranslocated to the cytosol, presumably by the same mechanism as used by misfolded proteins. The ER degradation enhancing alpha-mannosidase I-like protein, EDEM, is responsible for directing aberrant proteins for ER-associated protein degradation. In this study, we have investigated whether EDEM is involved in ricin retrotranslocation. Overexpression of EDEM strongly protects against ricin. However, when the interaction between EDEM and misfolded proteins is inhibited by kifunensin, EDEM promotes retrotranslocation of ricin from the ER to the cytosol. Furthermore, puromycin, which inhibits synthesis and thereby transport of proteins into the ER, counteracted the protection seen in EDEM-transfected cells. Coimmunoprecipitation studies revealed that ricin can interact with EDEM and with Sec61alpha, and both kifunensin and puromycin increase these interactions. Importantly, vector-based RNA interference against EDEM, which leads to reduction of the cellular level of EDEM, decreased retrotranslocation of ricin A-chain to the cytosol. In conclusion, our results indicate that EDEM is involved in retrotranslocation of ricin from the ER to the cytosol.  相似文献   

3.
Cytotoxic ribosome-inactivating lectins from plants   总被引:5,自引:0,他引:5  
A class of heterodimeric plant proteins consisting of a carbohydrate-binding B-chain and an enzymatic A-chain which act on ribosomes to inhibit protein synthesis are amongst the most toxic substances known. The best known example of such a toxic lectin is ricin, produced by the seeds of the castor oil plant, Ricinnus communis. For ricin to reach its substrate in the cytosol, it must be endocytosed, transported through the endomembrane system to reach the compartment from which it is translocated into the cytosol, and there avoid degradation making it possible for a few molecules to inactivate a large proportion of the ribosomes and hence kill the cell. Cell entry by ricin involves the following steps: (i) binding to cell-surface glycolipids and glycoproteins bearing beta-1,4-linked galactose residues through the lectin activity of the B-chain (RTB); (ii) uptake by endocytosis and entry into early endosomes; (iii) transfer by vesicular transport to the trans-Golgi network; (iv) retrograde vesicular transport through the Golgi complex and into the endoplasmic reticulum (ER); (v) reduction of the disulfide bond connecting the A- and B-chains; (vi) a partial unfolding of the A-chain (RTA) to enable it to translocate across the ER membrane via the Sec61p translocon using the pathway normally followed by misfolded ER proteins for targeting to the ER-associated degradation (ERAD) machinery; (vi) refolding in the cytosol into a protease-resistant, enzymatically active structure; (vii) interaction with the sarcin-ricin domain (SRD) of the large ribosome subunit RNA followed by cleavage of a single N-glycosidic bond in the RNA to generate a depurinated, inactive ribosome. In addition to the highly specific action on ribosomes, ricin and related ribosome-inactivating proteins (RIPs) have a less specific action in vitro on DNA and RNA substrates releasing multiple adenine, and in some instances, guanine residues. This polynucleotide:adenosine glycosidase activity has been implicated in the general antiviral, and specifically, the anti HIV-1 activity of several single-chain RIPs which are homologous to the A-chains of the heterodimeric lectins. However, in the absence of clear cause and effect evidence in vivo, such claims should be regarded with caution.  相似文献   

4.
Ricin acts by translocating to the cytosol the enzymatically active toxin A-chain, which inactivates ribosomes. Retrograde intracellular transport and translocation of ricin was studied under conditions that alter the sensitivity of cells to the toxin. For this purpose tyrosine sulfation of mutant A-chain in the Golgi apparatus, glycosylation in the endoplasmic reticulum (ER) and appearance of A-chain in the cytosolic fraction was monitored. Introduction of an ER retrieval signal, a C-terminal KDEL sequence, into the A-chain increased the toxicity and resulted in more efficient glycosylation, indicating enhanced transport from Golgi to ER. Calcium depletion inhibited neither sulfation nor glycosylation but inhibited translocation and toxicity, suggesting that the toxin is translocated to the cytosol by the pathway used by misfolded proteins that are targeted to the proteasomes for degradation. Slightly acidified medium had a similar effect. The proteasome inhibitor, lactacystin, sensitized cells to ricin and increased the amount of ricin A-chain in the cytosol. Anti-Sec61alpha precipitated sulfated and glycosylated ricin A-chain, suggesting that retrograde toxin translocation involves Sec61p. The data indicate that retrograde translocation across the ER membrane is required for intoxication.  相似文献   

5.
The plant toxin ricin has proven valuable as a membrane marker in studies of endocytosis as well as studies of different intracellular transport steps. The toxin, which consists of two polypeptide chains, binds by one chain (the B-chain) to both glycolipids and glycoproteins with terminal galactose at the cell surface. The other chain (the A-chain) enters the cytosol and inhibits protein synthesis enzymatically. After binding the toxin is endocytosed by different mechanisms, and it is transported via endosomes to the Golgi apparatus and the endoplasmic reticulum before translocation of the A-chain to the cytosol. The different transport steps have been analyzed by studying trafficking of ricin as well as modified ricin molecules.  相似文献   

6.
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.  相似文献   

7.
Ricin A chain (RTA) depurinates the α‐sarcin/ricin loop after it undergoes retrograde trafficking to the cytosol. The structural features of RTA involved in intracellular transport are not known. To explore this, we fused enhanced green fluorescent protein (EGFP) to precursor (preRTA‐EGFP), containing a 35‐residue leader, and mature RTA (matRTA‐EGFP). Both were enzymatically active and toxic in Saccharomyces cerevisiae. PreRTA‐EGFP was localized in the endoplasmic reticulum (ER) initially and was subsequently transported to the vacuole, whereas matRTA‐EGFP remained in the cytosol, indicating that ER localization is a prerequisite for vacuole transport. When the two glycosylation sites in RTA were mutated, the mature form was fully active and toxic, suggesting that the mutations do not affect catalytic activity. However, nonglycosylated preRTA‐EGFP had reduced toxicity, depurination and delayed vacuole transport, indicating that N‐glycosylation affects transport of RTA out of the ER. Point mutations in the C‐terminal hydrophobic region restricted RTA to the ER and eliminated toxicity and depurination, indicating that this sequence is critical for ER exit. These results demonstrate that N‐glycosylation and the C‐terminal hydrophobic region stimulate the toxicity of RTA by promoting ER export. The timing of depurination coincided with the timing of vacuole transport, suggesting that RTA may enter the cytosol during vacuole transport.  相似文献   

8.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a quality control system for newly synthesized proteins in the ER; nonfunctional proteins, which fail to form their correct folding state, are then degraded. The cytoplasmic peptide:N-glycanase is a deglycosylating enzyme that is involved in the ERAD and releases N-glycans from misfolded glycoproteins/glycopeptides. We have previously identified a mutant plant toxin protein, RTA (ricin A-chain nontoxic mutant), as the first in vivo Png1 (the cytoplasmic peptide:N-glycanase in Saccharomyces cerevisiae)-dependent ERAD substrate. Here, we report a new genetic device to assay the Png1-dependent ERAD pathway using the new model protein designated RTL (RTA-transmembrane-Leu2). Our extensive studies using different yeast mutants identified various factors involved in RTL degradation. The degradation of RTA/RTL was independent of functional Sec61 but was dependent on Der1. Interestingly, ER-mannosidase Mns1 was not involved in RTA degradation, but it was dependent on Htm1 (ERAD-related α-mannosidase in yeast) and Yos9 (a putative degradation lectin), indicating that mannose trimming by Mns1 is not essential for efficient ERAD of RTA/RTL. The newly established RTL assay will allow us to gain further insight into the mechanisms involved in the Png1-dependent ERAD-L pathway.  相似文献   

9.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

10.
Ricin is a promising candidate for the treatment of cancer because it can be selectively targeted to tumor cells via linkage to monoclonal antibodies. Biochemical evidence suggests that escape of ricin or its ribosome-inactivating subunit from an intracellular compartment is mediated by retrograde transport to the endoplasmic reticulum and subsequent direction into the ER-associated degradation pathway. Alternatively, lipase activity of ricin may facilitate leakage from endocytic vesicles. We have observed ricin-mediated release of macromolecular dyes from lipid vesicles that mimic the composition of endosomal membranes. Release of small molecules occurs to the same extent, suggesting an all-or-none mechanism due to bilayer destabilization. The level of accompanying membrane fusion depends on vesicle composition. Since it takes 24 h of incubation before the first traces of lysolipids are detectable by matrix-assisted laser desorption/ionization mass spectrometry, membrane destabilization is not due to the lipase activity of ricin.Abbreviations CF Carboxyfluorescein - DPhPC Diphytanoyl-phosphatidylcholine - DPA Dipicolinic acid - EDTA Ethylendiamine-tetracetate - ER Endoplasmic reticulum - ERAD ER-associated degradation - FRET Fluorescence-resonance energy transfer - GM1 Monosialoganglioside - MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry - MES 2-Morpholino-ethanesulfonic acid - NBD-PE N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-phosphatidylethanolamine) - PC Phosphatidylcholine - PE Phosphatidylethanolamine - PG Phosphatidylglycerol - Rh-PE N-(lissamine rhodamine B sulfonyl)-phosphatidylethanolamine - RIP Ribosome-inactivating protein - RTA A-chain of ricin - RTB B-chain of ricin - TES N-[Tris-(hydroxymethyl)-methyl]-2-aminoethansulfonic acid - TOF Time-of-flight  相似文献   

11.
Identification of the ricin lipase site and implication in cytotoxicity   总被引:4,自引:0,他引:4  
Ricin is a heterodimeric plant toxin and the prototype of type II ribosome-inactivating proteins. Its B-chain is a lectin that enables cell binding. After endocytosis, the A-chain translocates through the membrane of intracellular compartments to reach the cytosol where its N-glycosidase activity inactivates ribosomes, thereby arresting protein synthesis. We here show that ricin possesses a functional lipase active site at the interface between the two subunits. It involves residues from both chains. Mutation to alanine of catalytic serine 221 on the A-chain abolished ricin lipase activity. Moreover, this mutation slowed down the A-chain translocation rate and inhibited toxicity by 35%. Lipase activity is therefore required for efficient ricin A-chain translocation and cytotoxicity. This conclusion was further supported by structural examination of type II ribosome-inactivating proteins that showed that this lipase site is present in toxic (ricin and abrin) but is altered in nontoxic (ebulin 1 and mistletoe lectin I) members of this family.  相似文献   

12.
The interaction of ricin and of its constituent polypeptides, the A- and B-chain, with dipalmitoylphosphatidylcholine (DPPC) vesicles was investigated. The A- and B-chain were individually associated with DPPC vesicles, although the intact ricin was not associated. The maximum binding and association constants were evaluated to be 154 micrograms per mg of DPPC and Ka = 2.30 X 10(5) M-1 for the A-chain, and 87 micrograms per mg of DPPC and Ka = 14.5 X 10(5) M-1 for the B-chain, respectively. The A-chain could induce the phase transition release of carboxyfluorescein from DPPC vesicles to a greater extent than the B-chain, whereas the release induced by the intact ricin was negligible. The evidence indicated that the hydrophobic regions on the A-chain and on the B-chain were buried inside when the two chains constituted the intact ricin molecule through one interchain disulfide bond, and that the A-chain caused perturbation of the DPPC bilayer at the phase transition temperature with consequent leakage of carboxyfluorescein.  相似文献   

13.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

14.
蓖麻毒素A链突变体(MRTA)的分子设计   总被引:1,自引:0,他引:1  
利用同源模建的方法,借助分子力学优化,分子力学模拟退火设计构建了删除部分氨基酸序列的蓖麻毒素A链突变体。采用泊松-玻尔兹曼方程对比分析了蓖麻毒素A链与MRTA表现静电势分布,研究了RTA与MRTA蛋白表面静电性质;  相似文献   

15.
We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate.  相似文献   

16.
17.
Ricin A chain (RTA) undergoes retrograde trafficking and is postulated to use components of the endoplasmic reticulum (ER) associated degradation (ERAD) pathway to enter the cytosol to depurinate ribosomes. However, it is not known how RTA evades degradation by the proteasome after entry into the cytosol. We observed two distinct trafficking patterns among the precursor forms of wild type RTA and nontoxic variants tagged with enhanced green fluorescent protein (EGFP) at their C-termini in yeast. One group, which included wild type RTA, underwent ER-to-vacuole transport, while another group, which included the G83D variant, formed aggregates in the ER and was not transported to the vacuole. Peptide: N-glycanase (Png1), which catalyzes degradation of unfolded glycoproteins in the ERAD pathway affected depurination activity and toxicity of wild type RTA and G83D variant differently. PreG83D variant was deglycosylated by Png1 on the ER membrane, which reduced its depurination activity and toxicity by promoting its degradation. In contrast, wild type preRTA was deglycosylated by the free pool of Png1 in the cytosol, which increased its depurination activity, possibly by preventing its degradation. These results indicate that wild type RTA has a distinct requirement for Png1 compared to the G83D variant and is deglycosylated by Png1 in the cytosol as a possible strategy to avoid degradation by the ERAD pathway to reach the ribosome.  相似文献   

18.
蓖麻毒素A链突变体(MRTA)的分子设计   总被引:4,自引:0,他引:4  
利用同源模建的方法,借助分子力学优化、分子动力学模拟退火设计构建了删除部分氨基酸序列的蓖麻毒素A链突变体(MRTA)。采用泊松—玻尔兹曼方程对比分析了蓖麻毒素A链(RTA)与MRTA表观静电势分布,研究RTA与MRTA蛋白表面静电性质;通过半经验量子化学AM1与分子力学结合方法探讨RTA与MRTA功能域氨基酸前线分子轨道性质、能级分布,从理论上预测MRTA功能活性  相似文献   

19.
Deeks ED  Cook JP  Day PJ  Smith DC  Roberts LM  Lord JM 《Biochemistry》2002,41(10):3405-3413
Several protein toxins, including the A chain of ricin (RTA), enter mammalian cells by endocytosis and subsequently reach their cytosolic substrates by translocation across the endoplasmic reticulum (ER) membrane. To achieve this export, such toxins exploit the ER-associated protein degradation (ERAD) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates. Toxins that translocate from the ER have an unusually low lysine content. Since lysyl residues are potential ubiquitination sites, it has been proposed that this paucity of lysines reduces the chance of ubiquitination and subsequent ubiquitin-mediated proteasomal degradation [Hazes, B., and Read, R. J. (1997) Biochemistry 36, 11051-11054]. Here we provide experimental support for this hypothesis. The two lysyl residues within RTA were changed to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect, suggesting that the endogenous lysyl residues are not the usual sites for ubiquitin attachment. However, when four additional lysines were introduced into RTA in a way that did not compromise the activity, structure, or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasome inhibitor clasto-lactacystin beta-lactone increased the cytotoxicity of the lysine-rich RTA to a level approaching that of wild-type ricin. The introduction of four additional lysyl residues into a second ribosome-inactivating protein, abrin A chain, also dramatically decreased the cytotoxicity of the holotoxin compared to wild-type abrin. This effect could also be reversed by proteasomal inhibition. Our data support the hypothesis that the evolution of a low lysine content is a degradation-avoidance strategy for toxins that retrotranslocate from the ER.  相似文献   

20.
AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号