首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein chip technology is essential for high-throughput functional proteomics. We developed a novel protein tag consisting of five tandem cysteine repeats (Cys-tag) at termini of proteins. The Cys-tag was designed to allow covalent attachment of proteins to the surface of a maleimide-modified, diamond-like, carbon-coated silicon substrate. As model proteins, we created an enhanced green fluorescent protein (EGFP) and an EGFP-stathmin fusion protein, both of which contained a Cys-tag. We also included an oligo-histidine tag to allow its purification by the use of Ni beads, and we expressed the protein in Escherichia coli. The purified Cys-tagged EGFP could be captured on the maleimide-coated substrate efficiently so that 50 pg of the fusion protein was detected by fluorescence, and as little as 5 pg was immunodetected by combination with enhanced chemiluminescence. This highly sensitive immunodetection may be due to the strong covalent binding of the Cys-tag to the substrate combined with efficient exposure of the protein to the surrounding solution. Thus, the Cys-tag should be useful for developing a novel protein printing method for protein chips that requires very low amounts of protein and can be used for high-performance analysis of protein-ligand interactions.  相似文献   

2.
We fabricated a three-layer polydimethylsiloxane (PDMS)-based microfluidic chip for realizing urease inhibition assay with sensitive fluorescence detection. Procedures such as sample prehandling, enzyme reaction, reagent mixing, fluorescence derivatization, and detection can be readily carried out. Urease reactors were prepared by adsorption of rabbit immunoglobulin G (IgG) and immunoreaction with urease-conjugated goat anti-rabbit IgG. Acetohydroxamic acid (AHA) as a competitive inhibitor of urease was tested on the chip. Microfluidically generated gradient concentrations of AHA with substrate (urea) were loaded into urease reactors. After incubation, the produced ammonia was transported out of reactors and then reacted with o-phthalaldehyde (OPA) to generate fluorescent products. Urease inhibition was indicated by a decrease in fluorescence signal detected by microplate reader. The IC50 value of AHA was determined and showed good agreement with that obtained in microplate. The presented device combines several steps of the analytical process with advantages of low reagent consumption, reduced analysis time, and ease of manipulation. This microfluidic approach can be extended to the screening of inhibitory compounds in drug discovery.  相似文献   

3.
Davydov DR  Davydova NY  Halpert JR 《Biochemistry》2008,47(43):11348-11359
To establish a direct method for monitoring substrate binding in cytochrome P450eryF applicable at elevated hydrostatic pressures, we introduce a laser dye Fluorol-7GA (F7GA) as a novel fluorescent ligand. The high intensity of fluorescence and the reasonable resolution of the excitation band from the absorbance bands of P450 allowed us to establish highly sensitive binding assays compatible with pressure perturbation. The interactions of F7GA with P450eryF cause an ample spin shift revealing cooperative binding ( S50 = 8.2 +/- 1.3 microM; n = 2.3 +/- 0.1). Fluorescence resonance energy transfer (FRET) experiments suggest the presence of at least two substrate binding sites with apparent K D values in the ranges of 0.1-0.3 and 6-9 microM. Similar to that observed earlier with CYP3A4, increasing hydrostatic pressure does not cause either a complete dissociation of the substrate complexes or a displacement of the spin equilibrium toward the low-spin state. Rather, increased pressure enhances the cooperativity of the F7GA-induced spin shift, so that the Hill coefficient approaches 3 at 2 kbar. Lifetime FRET experiments revealed an important increase in the affinity of the enzyme for F7GA at elevated pressures, suggesting that the binding of the ligand induces a conformational transition associated with an important increase in the level of protein hydration. This transition largely attenuates the solvent accessibility of the heme pocket and causes an unusual stability of the high-spin, substrate-bound enzyme at elevated pressures.  相似文献   

4.
The circular dichroic and fluorescent spectral properties of the myosin head (subfragment I (SFI)) modified by covalently bridging the two essential thiol groups have been examined. CD spectra of SFI with the two thiols linked through reaction with a bifunctional reagent, N, N'- p-phenylenedimaleimide, show enhancement of the 282-nm minimum similar to that observed for the long-lived kinetic intermediate (Mg**MgADP-Pi) formed during the ATP cleavage reaction. No significant perturbation of the CD band at 282 nm is seen on blocking both thiol groups with the monofunctional reagent N-ethylmaleimide. The fluorescence emission maximum also shifts to lower wavelengths following covalent bridging (from 343 to 340 nm), but no change in fluorescent intensity has been detected. Formation of the covalent bridge completely inhibits interaction of the modified protein with F-actin. These results suggest that the local conformational state of the polypeptide chain formed on bridging the two thiol groups exhibits certain similarities with the state produced following binding of MgATP to native myosin.  相似文献   

5.
In this study, we describe a novel method for the detection of conformational changes in proteins, which is predicated on the reconstitution of split green fluorescent protein (GFP). We employed fluorescence complementation assays for the monitoring of the conformationally altered proteins. In particular, we used maltose binding protein (MBP) as a model protein, as MBP undergoes a characteristic hinge-twist movement upon substrate binding. The common feature of this approach is that GFP, as a reporter protein, splits into two non-fluorescent fragments, which are genetically fused to the N- and C-termini of MBP. Upon binding to maltose, the chromophores move closer together, resulting in the generation of fluorescence. This split GFP method also involves the reconstitution of GFP, which is determined via observations of the degree to which fluorescence intensity is restored. As a result, reconstituted GFP has been observed to generate fluorescence upon maltose binding in vitro, thereby allowing for the direct detection of changes in fluorescence intensity in response to maltose, in a concentration- and time-dependent fashion. Our findings showed that the fluorescence complementation assay can be used to monitor the conformational alterations of a target protein, and this ability may prove useful in a number of scientific and medical applications.  相似文献   

6.
A simple, sensitive and reliable method for the detection of cystine-containing peptides has been developed. A peptide bridged with a disulfide bond was reduced and cleaved with tributylphosphine, and then coupled with a thiol specific reagent, ammonium 7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate, under alkaline conditions. After incubation at 60 degrees C for 1 h, the fluorescent derivative formed was measured with excitation at 385 nm and emission at 515 nm. The intensity of fluorescence labeled to the peptide was very stable and the peptide containing disulfide was quantitatively determined in the range of 100 pmol to 10 nmol, when oxidized glutathione was used as a standard. This method was very useful for specific detection of cystine-containing peptides in the column effluents on reverse phase high performance liquid chromatography.  相似文献   

7.
A rapid and sensitive assay for the detection of deoxyribonuclease I (DNase I) activity is described. This method is based on the ability of PicoGreen dye to enhance its fluorescence when bound to double-stranded DNA. In the standard assay, reaction mixtures containing the DNase I sample and 0.2 microg of the substrate DNA were prepared in a fluorescence microtiter plate and incubated at 37 degrees C. At the end of the reaction, the diluted PicoGreen reagent was added to each well and fluorescence intensity was measured with a fluorescence plate reader. By this assay, it was possible to determine precisely as little as 5 pg of DNase I within an hour. Moreover, using a small amount of the substrate DNA, the method was shown to be suitable for the sensitive detection of DNase I inhibitor activity.  相似文献   

8.
A small and highly fluorescent non-natural amino acid that contains an anthraniloyl group (atnDap) was incorporated into various positions of streptavidin. The positions were directed by a CGGG/CCCG four-base codon/anticodon pair. The non-natural mutants were obtained in excellent yields and some of them retained strong biotin-binding activity. The fluorescence wavelength as well as the intensity of the anthraniloyl group at position 120 were sensitive to biotin binding. These unique properties indicate that the atnDap is the most suitable non-natural amino acid for a position-specific fluorescent labeling of proteins that is highly sensitive to microenvironmental changes.  相似文献   

9.
We report on the development of a sensitive real-time assay for monitoring the activity of l-asparaginase that hydrolyzes l-asparagine to l-aspartate and ammonia. In this method, l-aspartate is oxidized by l-aspartate oxidase to iminoaspartate and hydrogen peroxide (H2O2), and in the detection step horseradish peroxidase uses H2O2 to convert the colorless, nonfluorescent reagent Amplex Red to the red-colored and highly fluorescent product resorufin. The assay was validated in both the absorbance and the fluorescence modes. We show that, due to its high sensitivity and substrate selectivity, this assay can be used to measure enzymatic activity in human serum containing l-asparaginase.  相似文献   

10.
The wild type form of Red fluorescent protein (DsRed), an intrinsically fluorescent protein found in tropical corals, is found to be highly selective, reversible and sensitive for both Cu(+) and Cu(2+), with a nanomolar detection limit. The selectivity towards these ions is retained even in the presence of other heavy metal ions. The K(d) values for monovalent and divalent copper, based on single binding isotherms, are 450 and 540 nM, respectively. The wild type DsRed sensitivity to Cu(2+) (below 1 ppb) is seven orders of magnitude better than that of the related wild type Green Fluorescent protein (GFP), and it is even 40 times more sensitive than engineered mutants of GFP. Potential binding sites have been proposed, based on amino acid sequences for copper binding and the distance from the chromophore, with the aid of computer modeling.  相似文献   

11.
A method was developed for fluorescent microassay of pepsin with a fluorescent reagent, fluorescamine, and a nonquenching substrate, succinyl-albumin. In this method hydrolysis of succinyl-albumin by pepsin at pH 2,0 was stopped by adding phosphate buffer, pH 6.1, and newly liberated amino groups in the reaction mixture were determined quantitatively by fluorescence after adding fluorescamine. Fluorescence increased linearly with 1.0 to 18 ng of hog pepsin. The assay was 200 times more sensitive than the modified micromethod of Anson [(1939) J. Gen. Phys.22, 79–89].  相似文献   

12.
It is shown that conformational changes of receptor proteins brought about by binding of a ligand induce changes in the lipid environment of the receptor that can be monitored by fluorescent lipid probes. On this basis a new approach to studies of ligand-receptor binding is proposed. Using the interaction of the ricin B-chain with Burkitt lymphoma cells as an example and fluorescent labelled sphingomyelin as a probe, the ligand-induced changes of fluorescence anisotropy were shown to be concentration-dependent and to permit determination of the binding constant and the number of receptor-binding sites. The method was found to be specific and highly sensitive, allowing detection of the action of one RB molecule per cell. Scatchard analysis of the binding of 125I-RB demonstrated the presence on the cell surface of two binding sites with Kd approximately 10(-10) and approximately 10(-8) M, respectively. Only the high-affinity sites were detected by the fluorescence technique. Saturation of these sites resulted in maximum inhibition of protein synthesis.  相似文献   

13.
A fluorescent assay for proteolytic enzymes   总被引:8,自引:0,他引:8  
A method is described which permits the assay of proteolytic enzyme activity on protein substrates without precipitation or filtration steps, utilizing a fluorescent reagent which is specific for primary amines. The assay is about 100 times more sensitive than the Lowry method, much faster and less complicated. Ambiguities concerning the absorbing species are largely eliminated. The reagent (Fluorescamine, Hoffmann-La Roche RO-20-7234) yields fluorescent compounds with amino acids at pH 9.0 and with peptides at pH 6.8, but possesses no fluorescence by itself.  相似文献   

14.
Periplasmic binding proteins from E. coli undergo large conformational changes upon binding their respective ligands. By attaching a fluorescent probe at rationally selected unique sites on the protein, these conformational changes in the protein can be monitored by measuring the changes in fluorescence intensity of the probe which allow the development of reagentless sensing systems for their corresponding ligands. In this work, we evaluated several sites on bacterial periplasmic sulfate-binding protein (SBP) for attachment of a fluorescent probe and rationally designed a reagentless sensing system for sulfate. Eight different mutants of SBP were prepared by employing the polymerase chain reaction (PCR) to introduce a unique cysteine residue at a specific location on the protein. The sites Gly55, Ser90, Ser129, Ala140, Leu145, Ser171, Val181, and Gly186 were chosen for mutagenesis by studying the three-dimensional X-ray crystal structure of SBP. An environment-sensitive fluorescent probe (MDCC) was then attached site-specifically to the protein through the sulfhydryl group of the unique cysteine residue introduced. Each fluorescent probe-conjugated SBP mutant was characterized in terms of its fluorescence properties and Ser171 was determined to be the best site for the attachment of the fluorescent probe that would allow for the development of a reagentless sensing system for sulfate. Three different environment-sensitive fluorescent probes (1,5-IAEDANS, MDCC, and acylodan) were studied with the SBP171 mutant protein. A calibration curve for sulfate was constructed using the labeled protein and relating the change in the fluorescence intensity with the amount of sulfate present in the sample. The detection limit for sulfate was found to be in the submicromolar range using this system. The selectivity of the sensing system was demonstrated by evaluating its response to other anions. A fast and selective sensing system with detection limits for sulfate in the submicromolar range was developed.  相似文献   

15.
Y Yang  W Li  H Qi  Q Zhang  J Chen  Y Wang  B Wang  S Wang  C Yu 《Analytical biochemistry》2012,430(1):48-52
In the current work, we report a label-free fluorescence turn-on approach for the sensitive and selective sensing of Ag(+). A cationic perylene derivative, compound A, was used as the fluorescence probe. Compound A monomer is strongly fluorescent, and the fluorescence can be efficiently quenched through self-aggregation (self-assembly). A cytosine (C)-rich oligonucleotide, oligo-C, was employed. In the absence of Ag(+), oligo-C induced strong compound A aggregation due to electrostatic interactions in aqueous media, and very weak fluorescence signal was detected. However, in the presence of Ag(+), the specific interactions between oligo-C and Ag(+) induced hairpin structure formation of oligo-C through C-Ag(+)-C bonding interactions. Oligo-C binding to compound A aggregates was weakened; therefore, compound A monomer could be released and detected. The intensity of the fluorescence signal was directly related to the amount of Ag(+) added to the assay solution. Our method is highly sensitive-a limit of detection of 5nM was obtained-and also very selective. Ag(+) detection in complex sample mixtures was also demonstrated.  相似文献   

16.
Dual-color fluorescence cross-correlation spectroscopy (FCCS) is a promising technique for quantifying protein-protein interactions. In this technique, two different fluorescent labels are excited and detected simultaneously within a common measurement volume. Difficulties in aligning two laser lines and emission crossover between the two fluorophores, however, make this technique complex. To overcome these limitations, we developed a fluorescent protein with a large Stokes shift. This protein, named Keima, absorbs and emits light maximally at 440 nm and 620 nm, respectively. Combining a monomeric version of Keima with cyan fluorescent protein allowed dual-color FCCS with a single 458-nm laser line and complete separation of the fluorescent protein emissions. This FCCS approach enabled sensitive detection of proteolysis by caspase-3 and the association of calmodulin with calmodulin-dependent enzymes. In addition, Keima and a spectral variant that emits maximally at 570 nm might facilitate simultaneous multicolor imaging with single-wavelength excitation.  相似文献   

17.
4,4'-Bis(1",1",1"-trifluoro-2",4"-butanedione-6"-yl)-chlorosulfo-o-terphenyl (BTBCT) was synthesized by modifying the structure of the reported BHHCT. In comparison with the original BHHCT, the detection sensitivity of BTBCT-Eu chelate in aqueous solution was improved approximately 8 times by time-resolved fluorescence measurement. To construct sensitive TRFIAs with the use of BTBCT-Eu chelate as the fluorescent label, streptavidin-BSA conjugate was prepared by the maleimide-thiol method and labeled by BTBCT. The streptavidin-BSA conjugate and its BTBCT-labeled complex were affinity-purified using 2-iminobiotin-agarose as binding reagent. With streptavidin-BSA-BTBCT-Eu complex as signal generation reagent, a highly sensitive indirect serum hTSH TR-IFMA was developed. The low limit of detection (LLD) of the TSH TR-IFMA was 0.011 mIU/L with 10 microl of sample volume, corresponding to approximately 337,900 molecules per test. To evaluate the utility of BTBCT-Eu label in direct TRFIAs, a competitive serum T4 TRFIA was developed with T4-BSA-BTBCT-Eu complex as competing tracer. The measurements obtained by the present TSH TR-IFMA or T4 TRFIA correlated well with those obtained by commercial Wallac TSH DELFIA Ultra or T4 DELFIA, respectively. Primary results show that BTBCT can be employed as a powerful labeling material for constructing ultrasensitive TRFIAs.  相似文献   

18.
A cleavable photoactivable heterobifunctional reagent, the N-hydroxysuccinimide ester of 1- azido-5-naphthalene sulfonyl S-carboxymethylthiocysteamine (NHS-ANS-CTC), was synthesized and characterized. The reagent was applicable to the group-directed modification of protein ligands, such as an invertebrate lectin and a trypsin inhibitor. The modified ligands bound to rabbit erythrocyte ghosts and trypsin, respectively. Upon exposure to ultraviolet light, the modified ligands reacted with their binding proteins to form cross-linked fluorescent products. The cross-linked fluorescent complexes were readily cleaved by reducing the disulfide bond of the reagent, leaving the fluorescent probe on the binding proteins. The photolabeled binding proteins were analyzed by SDS-polyacrylamide gel electrophoresis. The fluorescence intensity of the fluorescent probe was enhanced by 4~8 times to improve sensitivity when the SDS-gel was dehydrated with methanol. This phenomenon was also observed with the proteins labeled with 1-dimethylamino-5-naphthalene sulfonyl chloride.  相似文献   

19.
A combination of microfluidic protein patterning and quantitative microfluidic handling has been used to analyze the binding kinetics of protein-ligand interactions on the nanoliter scale. The microfluidic handling method employing hydrophobic valving and pneumatic control allowed us to control nanoliter volumes of ligand or protein on a microfluidic chip. A hydrophobic and inert fluorocarbon thin film was patterned on a silicon nitride substrate to prevent non-specific binding on the background. Selectively patterned protein patterns of various sizes were used for quantitative analysis of the kinetic parameters of immobilized proteins on the circular patterns. As a model system, a streptavidin-patterned array of the same-sized pattern, i.e. 150 microm diameter, was used to capture FITC-BSA-biotin present in solution. The fluorescence intensity was well matched with the Langmuir isotherm model results, showing a dissociation constant of 2.43x10(-8)M. Similar streptavidin arrays with different-sized spots, ranging from 50 to 200 microm, showed a consistent dissociation constant of FITC-BSA-biotin with streptavidin pattern. Therefore, the reduction of pattern size of an immobilized protein did not change the dissociation rate of the ligand.  相似文献   

20.
We have developed a set of simple modifications of the green fluorescent protein (GFP)fragment reassembly assay in bacteria that permits: (i)fluorescent microscopy visualization of GFP reassembly only 1-2 h after induction of protein expression, thus approximating the detection of GFP reassembly to the real-time dynamics of protein complex formation in living cells; (ii) spectrofluorometric detection of reassembled GFP fluorescent signals directly in lysates from cell suspension thereby avoiding, in many cases, the need for tag-affinity isolation of protein complexes; and (iii) comparative quantification of signal intensity in numerous cell-sample lysates using a Bio-Rad IQ5 spectrofluorometric detection system (Bio-Rad Laboratories, Madrid, Spain). Collectively, the results demonstrate that the combination of microscopic and spectrofluorometric detection provides a time-saving and sensitive alternative to existing methods of fluorescence complementation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号