首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of new blood vessels (angiogenesis) is a feature common to all solid tumors. The integrin receptor alpha(V)beta(3), which is found on endothelial cells lining newly growing blood vessels at a higher density than on mature blood vessels, is being explored as a marker for tumor angiogenesis. Bitistatin, a member of the disintegrin family of polypeptides, has affinity for alpha(V)beta(3) integrins. To determine whether radiolabeled bitistatin could target tumors, its biodistribution was tested in tumor-bearing mice. For initial validation studies, (125)I-bitistatin was injected into BALB/c mice bearing EMT-6 mouse mammary carcinoma tumors, a model that is highly vascular but which lacks alpha(V)beta(3) directly on tumor cells. Tumor uptake reached maximal values (11.7 +/- 4.6 %ID/g) at 2 h. Co-injection of 200 microg of unlabeled bitistatin reduced tumor uptake 62%, suggesting that the binding of (125)I-bitistatin is receptor-mediated. This work was extended to include the beta(+)-emitting radionuclide (64)Cu, which was attached to bitistatin via 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (DOTA). This modification did not significantly alter receptor binding in vitro. MicroPET images obtained with (64)Cu-DOTA-bitistatin showed that the tumor could easily be identified 4 h after administering the radiopharmaceutical. The biodistribution of (64)Cu-DOTA-bitistatin differed from the (125)I analogue, in that maximum tumor uptake was nearly 8-fold lower and took at least 6 h to reach maximal binding (1.6 +/- 0.2 %ID/g). As with (125)I-labeled bitistatin, the (64)Cu conjugate showed a 50% reduction in tumor uptake with the co-injection of 200 microg of unlabeled bitistatin (0.8 +/- 0.2 %ID/g). Competition studies with integrin-specific peptides indicated that the tumor uptake was related to both alpha(v)beta(3) and alpha(IIb)beta(3) integrin binding. To see if tumor uptake could be improved upon, (64)Cu was tethered to bitistatin using bromoacetamidobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (BAD). Tumor uptake for (64)Cu-BAD-2IT-bitistatin was higher than the DOTA conjugate at all time points, reaching a maximum at least 6 h postinjection (5.2 +/- 0.6 %ID/g); however, this was accompanied by higher uptake in nontarget organs at all time points. Radiolabeled ligands of this type may be useful in the targeting of tumor angiogenesis, but the choice of radiolabeling approach has a significant impact on the in vivo properties of the radioligand.  相似文献   

2.
Radiolabeling of liposomes with 64Cu (t(1/2)=12.7 h) is attractive for molecular imaging and monitoring drug delivery. A simple chelation procedure, performed at a low temperature and under mild conditions, is required to radiolabel preloaded liposomes without lipid hydrolysis or the release of the encapsulated contents. Here, we report a 64Cu postlabeling method for liposomes. A 64Cu-specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N',N'-tetraacetic acid (BAT), was conjugated with an artificial lipid to form a BAT-PEG-lipid. After incorporation of 0.5% (mol/mol) BAT-PEG-lipid during liposome formulation, liposomes were successfully labeled with 64Cu in 0.1 M NH4OAc pH 5 buffer at 35 degrees C for 30-40 min with an incorporation yield as high as 95%. After 48 h of incubation of 64Cu-liposomes in 50/50 serum/PBS solution, more than 88% of the 64Cu label was still associated with liposomes. After injection of liposomal 64Cu in a mouse model, 44+/-6.9, 21+/-2.7, 15+/-2.5, and 7.4+/-1.1 (n=4) % of the injected dose per cubic centimeter remained within the blood pool at 30 min, 18, 28, and 48 h, respectively. The biodistribution at 48 h after injection verified that 7.0+/-0.47 (n=4) and 1.4+/-0.58 (n=3) % of the injected dose per gram of liposomal 64Cu and free 64Cu remained in the blood pool, respectively. Our results suggest that this fast and easy 64Cu labeling of liposomes could be exploited in tracking liposomes in vivo for medical imaging and targeted delivery.  相似文献   

3.
Ren G  Webster JM  Liu Z  Zhang R  Miao Z  Liu H  Gambhir SS  Syud FA  Cheng Z 《Amino acids》2012,43(1):405-413
Molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression has drawn significant attention because of the unique role of the HER2 gene in diagnosis, therapy and prognosis of human breast cancer. In our previous research, a novel cyclic 2-helix small protein, MUT-DS, was discovered as an anti-HER2 Affibody analog with high affinity through rational protein design and engineering. MUT-DS was then evaluated for positron emission tomography (PET) of HER2-positive tumor by labeling with two radionuclides, 68Ga and 18F, with relatively short half-life (t1/2<2 h). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with 64Cu or 111In and evaluated for in vivo targeting of HER2-positive tumor in mice. Design 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated MUT-DS (DOTA-MUT-DS) was chemically synthesized using solid phase peptide synthesizer and I2 oxidation. DOTA-MUT-DS was then radiolabeled with 64Cu or 111In to prepare the HER2 imaging probe (64Cu/111In-DOTA-MUT-DS). Both biodistribution and microPET imaging of the probe were evaluated in nude mice bearing subcutaneous HER2-positive SKOV3 tumors. DOTA-MUT-DS could be successfully synthesized and radiolabeled with 64Cu or 111In. Biodistribution study showed that tumor uptake value of 64Cu or 111In-labeled DOTA-MUT-DS was 4.66±0.38 or 2.17±0.15%ID/g, respectively, in nude mice bearing SKOV3 xenografts (n=3) at 1 h post-injection (p.i.). Tumor-to-blood and tumor-to-muscle ratios for 64Cu-DOTA-MUT-DS were attained to be 3.05 and 3.48 at 1 h p.i., respectively, while for 111In-DOTA-MUT-DS, they were 2.04 and 3.19, respectively. Co-injection of the cold Affibody molecule ZHER2:342 with 64Cu-DOTA-MUT-DS specifically reduced the SKOV3 tumor uptake of the probe by 48%. 111In-DOTA-MUT-DS displayed lower liver uptake at all the time points investigated and higher tumor to blood ratios at 4 and 20 h p.i., when compared with 64Cu-DOTA-MUT-DS. This study demonstrates that the 2-helix protein based probes, 64Cu/111In DOTA-MUT-DS, are promising molecular probes for imaging HER2-positive tumor. Two-helix small protein scaffold holds great promise as a novel and robust platform for imaging and therapy applications.  相似文献   

4.
The radiolabeled triplex-forming oligonucleotide (TFO) demonstrated the potential for sequence-specific DNA binding and destruction. In this study, by selecting the polypurine-polypyrimidine stretch (2950-2978) in the human N-myc gene as a target, the (111)In-labeled TFO targeting human N-myc gene (N-mycTFO(111)In) was tested for its cellular uptake and nuclear localization in vitro and in vivo. This is because the deregulated N-myc expression is strongly implicated in the pathogenesis of several important human malignancies, including breast carcinoma and neuroblastoma. N-mycTFO(111)In was bound selectively to the N-myc sequence in vitro. The total cellular uptake of TFO after the incubation of various normal and cancer cells with TFO for 24 h was 20-54.8% of the injected dose (%ID), and the nuclear localization was 6.59-30.0%ID, depending on cell lines. The highest cellular uptake was found in the human neuroblastoma SK-N-DZ (54.8%ID), human mammary ductal carcinoma T47-D (54%ID), human acute T cell leukemia Jurkat (54%ID), and multidrug-resistant human breast adenocarcinoma MCF7/TH (49.5%ID). The lowest was in the human normal mammary epithelium MCF10A (20.0%ID). The highest nuclear localization was found in MCF7/TH (30%ID) and SK-N-DZ (28.7%ID). The lowest was in MCF11A (6.59%ID). We next injected TFO into human mammary tumor-xenografted Balb/c nude mice. Tumor targeting of TFO in vivo reached its maximum peak 5 h after the intravenous injection in three types of tumor models. They are 21.0 +/- 3.23%ID per gram of tissue (%ID/g) for MCF7/TH, 7.77 +/- 2.11%ID/g for MCF7, and 4.53 +/- 1.20%ID/g for MCF10A. The TFO blood level decreased from 8.00 +/- 0.90%ID/g 15 min after the injection, to 1.30 +/- 0.30%ID/g after 19 h. The kidney TFO level increased rapidly from 5.93 +/- 0.94%ID/g after 15 min, to 25.1 +/- 5.60%ID/g after 19 h. A high TFO level (19.7-24.5%ID/g) in the liver was maintained until 19 h after the injection. Therefore, we suggest that the (111)In-labeled N-myc-targeting TFO, a promising modality for nanoexplosive gene therapy, could effectively target the nucleus of the multidrug-resistant breast carcinoma MCF7/TH in vitro and in vivo. It has approximately 130 min of half-life of blood TFO.  相似文献   

5.
Cell adhesion molecules alphavbeta3 and alphavbeta5 play a pivotal role in tumor angiogenesis and metastasis. Antiangiogenic therapy by using small peptide antagonists of alphav-integrins slows tumor growth and prevents tumor spread. The ability to visualize and quantify integrin expression will enable selection of appropriate patients for clinical trials, following determination of treatment efficacy and development of new potent drugs. We have previously labeled cyclic RGD peptide c(RGDyK) with 125I and 18F and applied the radiotracers to both subcutaneous and orthotopic brain tumor models. Here we conjugated c(RGDyK) with 1,4,7,10-tetraaza-1,4,7,10-tetradodecane-N,N',N' ',N' "-tetraacetic acid (DOTA) and labeled the DOTA-RGD conjugate with 64Cu (t1/2) = 12.8 h, 19% beta+) in high radiochemical purity and specific activity. The tumor targeting ability and in vivo kinetics of 64Cu-DOTA-RGD was compared with [18F]FB-RGD and 125I-RGD in orthotopic MDA-MB-435 breast cancer model. All three radiotracers revealed fast blood clearance and high tumor-to-blood and tumor-to-muscle ratios. 125I-RGD had higher tumor uptake than the corresponding 18F and 64Cu analogues. [18F]FB-RGD indicated a fast tumor washout rate and an unfavorable hepatobiliary excretion pathway, resulting in significant activity accumulation in gallbladder and intestines. 64Cu-DOTA-RGD had prolonged tumor retention (1.44 +/- 0.09 %ID/g at 4 h postinjection) and persistent uptake in the liver. All three tracers revealed receptor specific tumor accumulation which were illustrated by effective blocking via coinjection with a blocking dose of c(RGDyK). Static microPET imaging and whole-body autoradiography showed strong contrast from the contralateral background. In conclusion, overall molecular charge and characteristics of radiolabels have profound effects on tumor accumulation and in vivo kinetics of radiolabeled RGD peptide. Further modification of the RGD peptide and optimization of the tracer for prolonged tumor uptake and improved in vivo kinetics are being explored.  相似文献   

6.
Bombesin (BBN)-based radiolabeled peptides exhibit promising properties for targeted imaging of gastrin-releasing peptide receptors (GRPR)-positive tumors. The aim of this study was to evaluate with positron emission tomography (PET) the pharmacokinetic and imaging properties of two novel BBN-based radiolabeled peptides, (64)Cu/and (68)Ga/NOTA-PEG-BBN(6-14), for diagnosis of breast and prostate cancers using small animal models. Competitive binding assays on T47D breast and PC3 prostate cancer cells showed that the affinity for GRPR depends on the complexed metal and can vary up to a factor of about 3; (64)Cu/NOTA-PEG-BBN(6-14) was found to have the lowest inhibition constant (1.60 ± 0.59 nM). (64)Cu/and (68)Ga/NOTA-PEG-BBN(6-14) presented similar cell uptake on T47D and PC3 cells and were stable in vivo. Biodistribution studies of radiolabeled peptides carried out in Balb/c and tumor-bearing Balb/c nude mice showed that (64)Cu/NOTA-PEG-BBN(6-14) presented higher GRPR-mediated uptake in pancreas and adrenal glands, but comparable PC3 tumor uptake as (68)Ga/NOTA-PEG-BBN(6-14). Finally, receptor-dependent responses were observed during blocking studies with unlabeled peptide in both biodistribution and small-animal PET imaging studies. Our results confirmed the dependence of the affinity and pharmacokinetics of BBN-based radiopeptides on the complexed radiometal. Interspecies differences between mouse and human GRPR binding properties were also noted in these preclinical studies. Considering their good imaging characteristics, both (64)Cu/NOTA-PEG-BBN(6-14) and (68)Ga/NOTA-PEG-BBN(6-14) are promising candidates for GRPR-targeted PET imaging of breast and prostate cancers.  相似文献   

7.
The goal of this study was to evaluate a somatostatin receptor ligand, DOTA-D-Tyr(1)-octreotate (DOTA-DY1-TATE), that has the chelator 1,4,7,10-tetraazacyclotetradecane-N,N',N',N'"-tetraacetic acid (DOTA) attached to the D-Tyr(1) residue, allowing radiolabeling with both radiohalogens and radiometals. A potential advantage of having a chelator attached to the Tyr(1) residue is that halogen radiolabels may residualize or remain trapped in tumor cells rather than clear from the tumor. DOTA-DY1-TATE was synthesized by solid-phase methods and radiolabeled with (61)Cu, (64)Cu, and (125)I in high radiochemical purity and specific activity. A competitive binding assay demonstrated that (nat)Cu-DOTA-DY1-TATE and DOTA-(nat)I-DY1-TATE had comparable affinity to (nat)In-DTPA-OC in AR42J rat pancreatic tumor cells membranes. (61)Cu-DOTA-DY1-TATE had a dissociation constant (K(d)) of 176.4 pM and a receptor concentration (B(max)) of 244.4 fmol/mg. A tumor uptake of 1.515 %ID/g was determined for (64)Cu-DOTA-DY1-TATE and 0.814 %ID/g for DOTA-(125)I-DY1-TATE in AR42J tumor bearing Lewis rats at 1 h postinjection. DOTA-(125)I-DY1-TATE remained in the tumor at a higher concentration out to 4 h postinjection, suggesting that the iodine may have residualized in the tumor cells. MicroPET imaging of (64)Cu-DOTA-DY1-TATE in AR42J tumor bearing rats and SCID mice at 2 h postinjection showed significant uptake and good contrast in the thigh tumors in the rat model and in the neck and thigh tumors of the mouse. This study demonstrates that DOTA-DY1-TATE is a somatostatin analogue that can be labeled with both metal and halogen radionuclides, and its (64)Cu- and (125)I-radiolabeled compounds showed somatostatin receptor-mediated uptake in normal and tumor tissues.  相似文献   

8.
One of the limitations of therapy with radiolabeled monoclonal antibodies (mAbs) is that significant toxicities can arise from circulating non-tumor-bound radiolabeled conjugate. Here, we describe a new method to reduce systemic radiation exposure from radiolabeled mAbs involving the attachment of the radioisotope through a linker that can be cleaved by an administered enzyme. To demonstrate the feasibility of this approach, we prepared a conditionally cleavable radioimmunoconjugate (RIC) composed of (131)I-labeled cephalosporin conjugated to Tositumomab, a mAb against the CD20 antigen. The cleavable RIC bound antigen identically to directly iodinated antibody, and in the presence of beta-lactamase, about 80-85% of the radioisotope was released. In vivo studies in mice revealed that the cleavable RIC and the directly iodinated anti-CD20 antibody had similar biodistribution patterns. Systemically administered beta-lactamase induced a 2-3-fold decrease in the percent injected dose (ID) of the cleavable RIC/g of blood, marrow, spleen, lung, and liver 1 h after enzyme treatment, and a 4-6-fold decrease 20 h after enzyme treatment. This was accompanied by a 20-fold increase in % ID/g in urine 1 h after enzyme treatment, indicating that the released radiolabel was rapidly excreted through the kidneys. In mice with human tumor xenografts, there was no decrease in the %ID/g in tumor 1 h after enzyme treatment, but by 4 h after enzyme injection, decreases in tumor radioactive content began to diminish the targeting advantage. These studies demonstrate that the cleavable RIC substrate is able to bind to tumor antigens and localize within human tumor xenografts and that accelerated systemic clearance can be induced with beta-lactamase.  相似文献   

9.
Dubin-Johnson syndrome (DJS) is caused by a deficiency of the human canalicular multispecific organic anion transporter (cMOAT). A new lipophilic copper-64 complex of 1,4,7-tris(carboxymethyl)-10-(tetradecyl)-1,4,7,10-tetraazadodecane (5) was prepared and evaluated for potential as a diagnostic tool for DJS. The prepared ligand was labeled with (64)Cu citrate in high radiochemical purity. In vivo uptake and clearance of the complex was determined through biodistribution studies using normal Sprague-Dawley rats and mutant cMOAT-deficient (TR(-)) rats. In normal rats, the radioactive copper complex was cleared quickly from the body exclusively through the hepatic pathway. The (64)Cu complex was taken up rapidly by the liver and quickly excreted into the small intestine and then the upper large intestine, whereas <1% ID/organ was found in the kidney at all time points post injection. Whereas activity was accumulated continuously in the liver of TR(-) rats, it was not excreted into the small intestine. MicroPET studies of normal and TR(-) rats were consistent with biodistribution data and showed dramatically different images. This study strongly suggests that cMOAT is involved in excretion of (64)Cu-5. The significant difference between the biodistribution data and microPET images of the normal and TR(-) rats demonstrates that this new (64)Cu complex may allow noninvasive diagnosis of DJS in humans.  相似文献   

10.

Objective

The α7 nicotinic acetylcholine receptors (nAChRs) play a vital role in the pathophysiology of neuropsychiatric diseases such as Alzheimer’s disease and depression. However, there is currently no suitable positron emission tomography (PET) or Single-Photon Emission Computed Tomography (SPECT) radioligands for imaging α7 nAChRs in brain. Here our aim is to radiosynthesize a novel SPECT radioligand 131I-CHIBA-1001 for whole body biodistribution study and in vivo imaging of α7 nAChRs in brain.

Method

131I-CHIBA-1001 was radiosynthesized by chloramine-T method. Different conditions of reaction time and temperature were tested to get a better radiolabeling yield. Radiolabeling yield and radiochemical purities of 131I-CHIBA-1001 were analyzed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) system. Whole body biodistribution study was performed at different time points post injection of 131I-CHIBA-1001 in KM mice. Monkey subject was used for in vivo SPECT imaging in brain.

Result

The radiolabeling yield of 131I-CHIBA-1001 reached 96% within 1.5∼2.0 h at 90∼95°C. The radiochemical purity reached more than 99% after HPLC purification. 131I-CHIBA-1001 was highly stable in saline and fresh human serum in room temperature and 37°C separately. The biodistribution data of brain at 15, 30, and 60 min were 11.05±1.04%ID/g, 8.8±0.04%ID/g and 6.28±1.13%ID/g, respectively. In experimental SPECT imaging, the distribution of radioactivity in the brain regions was paralleled with the distribution of α7 nAChRs in the monkey brain. Moreover, in the blocking SPECT imaging study, the selective α7 nAChR agonist SSR180711 blocked the radioactive uptake in the brain successfully.

Conclusion

The CHIBA-1001 can be successfully radiolabeled with 131I using the chloramine-T method. 131I-CHIBA-1001 can successfully accumulate in the monkey brain and image the α7 acetylcholine receptors. 131I-CHIBA-1001 can be a candidate for imagingα7 acetylcholine receptors, which will be of great value for the diagnosis and treatment of mental diseases.  相似文献   

11.

Purpose

Oxidized low-density lipoprotein (LDL) plays an essential role in the pathogenesis of atherosclerosis. The purpose of this study was to characterize the pharmacokinetics (PK) of a human recombinant IgG1 antibody to oxidized LDL (anti-oxLDL) in cynomolgus monkey. The tissue biodistribution of anti-oxLDL was also investigated using positron emission tomography (PET) imaging.

Methods

Anti-oxLDL was conjugated with the N-hydroxysuccinimide ester of DOTA (1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid) and radiolabeled by chelation of radioactive copper-64 (64Cu) for detection by PET. Anti-oxLDL was administered as a single intravenous (IV) dose of 10 mg/kg (as a mixture of radiolabeled and non-labeled material) to two male and two female cynomolgus monkeys. Serum samples were collected over 29 days. Two ELISA methods were used to measure serum concentrations of anti-oxLDL; Assay A was a ligand binding assay that measured free anti-oxLDL (unbound and partially bound forms) and Assay B measured total anti-oxLDL. The biodistribution was observed over a 48-hour period following dose administration using PET imaging.

Results

Anti-oxLDL serum concentration-time profiles showed a biphasic elimination pattern that could be best described by a two-compartment elimination model. The serum concentrations obtained using the two ELISA methods were comparable. Clearance values ranged from 8 to 17 ml/day/kg, while beta half-life ranged from 8 to12 days. The initial volume of distribution and volume of distribution at steady state were approximately 55 mL/kg and 150 mL/kg, respectively. PET imaging showed distribution predominantly to the blood pool, visible as the heart and great vessels in the trunk and limbs, plus diffuse signals in the liver, kidney, spleen, and bone marrow.

Conclusions

The clearance of anti-oxLDL is slightly higher than typical IgG1 antibodies in cynomolgus monkeys. The biodistribution pattern appears to be consistent with an antibody that has no large, rapid antigen sink outside the blood space.  相似文献   

12.
Optimal PET imaging of tumors with radiolabeled engineered antibodies requires, among other parameters, matching blood clearance and tumor uptake with the half-life of the engineered antibody. Although diabodies have favorable molecular sizes (50 kDa) for rapid blood clearance (t(1/2) = 30-60 min) and are bivalent, thereby increasing tumor uptake, they exhibit substantial kidney uptake as their major route of clearance, which is especially evident when they are labeled with the PET isotope (64)Cu (t(1/2) = 12 h). To overcome this drawback, diabodies may be conjugated to PEG, a modification that increases the apparent molecular size of the diabody and reduces kidney uptake without adversely affecting tumor uptake or the tumor to blood ratio. We show here that site-specific attachment of monodispersed PEGn of increasing molecular size (n = 12, 24, and 48) can uniformly increase the apparent molecular size of the PEG-diabody conjugate, decrease kidney uptake, and increase tumor uptake, the latter due to the increased residence time of the conjugate in the blood. Since the monodispersed PEGs were preconjugated to the chelator DOTA, the conjugates were able to bind radiometals such as (111)In and (64)Cu that can be used for SPECT and PET imaging, respectively. To allow conjugation of the DOTA-PEG to the diabody, the DOTA-PEG incorporated a terminal cysteine conjugated to a vinyl sulfone moiety. In order to control the conjugation chemistry, we have engineered a surface thiolated diabody that incorporates two cysteines per monomer (four per diabody). The thiolated diabody was expressed and purified from bacterial fermentation and only needs to be reduced prior to conjugation to the DOTA-PEGn-Cys-VS. This novel imaging agent (a diabody with DOTA-PEG48-Cys-VS attached to introduced thiols) gave up to 80%ID/g of tumor uptake with a tumor to blood ratio (T/B) of 8 at 24 h when radiolabeled with (111)In and 37.9% ID/g of tumor uptake (T/B = 8) at 44 h when radiolabeled with (64)Cu in PET imaging in an animal model. Tumor uptake was significantly improved from the 50% ID/g at 24 h observed with diabodies that were pegylated on surface lysine residues. Importantly, there was no loss of immunoreactivity of the site-specific Cys-conjugated diabody to its antigen (TAG-72) compared to the parent, unconjugated diabody. We propose that thiolated diabodies conjugated to DOTAylated monodisperse PEGs have the potential for superior SPECT and PET imaging in a clinical setting.  相似文献   

13.
The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.  相似文献   

14.
Epidermal growth factor receptor 1 (EGFR) is an attractive target for radionuclide therapy of head and neck carcinomas. Affibody molecules against EGFR (Z(EGFR)) show excellent tumor localizations in imaging studies. However, one major drawback is that radiometal-labeled Affibody molecules display extremely high uptakes in the radiosensitive kidneys which may impact their use as radiotherapeutic agents. The purpose of this study is to further explore whether radiometal-labeled human serum albumin (HSA)-Z(EFGR) bioconjugates display desirable profiles for the use in radionuclide therapy of EGFR-positive head and neck carcinomas. The Z(EFGR) analog, Ac-Cys-Z(EGFR:1907), was site-specifically conjugated with HSA. The resulting bioconjugate 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A)-HSA-Z(EGFR:1907) was then radiolabeled with either (64)Cu or (177)Lu and subjected to in vitro cell uptake and internalization studies using the human oral squamous carcinoma cell line SAS. Positron emission tomography (PET), single photon emission computed tomography (SPECT), and biodistribution studies were conducted using SAS-tumor-bearing mice. Cell studies revealed a high (8.43 ± 0.55 % at 4 h) and specific (0.95 ± 0.09 % at 4 h) uptake of (177)Lu-DO3A-HSA-Z(EGFR:1907) as determined by blocking with nonradioactive Z(EGFR:1907). The internalization of (177)Lu-DO3A-HSA-Z(EGFR:1907) was verified in vitro and found to be significantly higher than that of (177)Lu-labeled Z(EFGR) at 2-24 h of incubation. PET and SPECT studies showed good tumor imaging contrasts. The biodistribution of (177)Lu-DO3A-HSA-Z(EGFR:1907) in SAS-tumor-bearing mice displayed high tumor uptake (5.1 ± 0.44 % ID/g) and liver uptake (31.5 ± 7.66 % ID/g) and moderate kidney uptake (8.5 ± 1.08 % ID/g) at 72 h after injection. (177)Lu-DO3A-HSA-Z(EGFR:1907) shows promising in vivo profiles and may be a potential radiopharmaceutical for radionuclide therapy of EGFR-expressing head and neck carcinomas.  相似文献   

15.
Zhang Y  Hong H  Engle JW  Bean J  Yang Y  Leigh BR  Barnhart TE  Cai W 《PloS one》2011,6(12):e28005
Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-labeled TRC105 (a chimeric mAb that binds to both human and murine CD105), through two commonly used chelators: 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Flow cytometry analysis confirmed that chelator conjugation of TRC105 did not affect its CD105 binding affinity or specificity. PET imaging and biodistribution studies in 4T1 murine breast tumor-bearing mice revealed that (64)Cu-NOTA-TRC105 exhibited better stability than (64)Cu-DOTA-TRC105 in vivo, which resulted in significantly lower liver uptake without compromising the tumor targeting efficiency. In conclusion, this study confirmed that NOTA is a superior chelator to DOTA for PET imaging with (64)Cu-labeled TRC105.  相似文献   

16.
Several promising agents have been synthesized and evaluated for in vivo imaging probes of beta-amyloid plaques in Alzheimer's disease (AD) brain. Recently, we have developed flavone derivatives, which possess the basic structure of the 2-phenylchromone, as useful candidates for amyloid imaging agents. In an attempt to further develop novel tracers, we synthesized and evaluated a series of 2-styrylchromone derivatives, which replace the 2-phenyl substituent of flavone backbone with the 2-styryl. A series of radioiodinated styrylchromone derivatives were designed and synthesized. The binding affinities for amyloid plaques were assessed by in vitro binding assay using pre-formed synthetic Abeta(1-40) aggregates. The new series of styrylchromone derivatives showed high binding affinity to Abeta aggregates at the K(d) values of 32.0, 17.5 and 8.7nM for [(125)I]6, [(125)I]9, and [(125)I]12, respectively. In biodistribution studies using normal mice, [(125)I]6 and [(125)I]9 examined in normal mice displayed high brain uptakes with 4.9 and 2.8%ID/g at 2min post injection. The radioactivity washed out from the brain rapidly (1.6 and 1.0%ID/g at 60min post injection for [(125)I]6 and [(125)I]9, respectively). But [(125)I]12 did not show marked brain uptake, and the washout rate from the brain was relatively slow throughout the time course (1.1 and 1.4%ID/g at 2 and 30min post injection, respectively). Although additional modifications are necessary to improve the brain uptake and rapid clearance of non-specifically bound radiotracer, the styrylchromone backbone may be useful as a backbone structure to develop novel beta-amyloid imaging agents.  相似文献   

17.
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a variety of carcinomas and has been the target for detection and treatment of these neoplasms in animals. In particular, analogues of the tetradecapeptide bombesin (BN) have been radiolabeled with (99m)Tc and (111)In for detection of GRPR-positive tumors by gamma ray scintigraphy. The goal of this study was to evaluate the potential of the bombesin analogue, DOTA-Aoc-BN(7-14), for positron-emission tomographic (PET) imaging after radiolabeling with the positron-emitter (64)Cu. A saturation binding assay on PC-3 human prostate cancer cells showed that (64)Cu-DOTA-Aoc-BN(7-14) had an equilibrium binding constant (K(d)) of 6.1 +/- 2.5 nM and a receptor concentration (B(max)) of 2.7 +/- 0.6 x 10(5) receptors/cell. The radiolabeled analogue also showed rapid internalization with 18.2% internalized into 10(5) PC-3 cells by 2 h. The tumor localization of (64)Cu-DOTA-Aoc-BN(7-14) was 5.5% injected dose per gram in athymic nude mice bearing PC-3 xenografts at 2 h postinjection. The tumor retention with respect to the 2 h value was 76% and 45% at 4 and 24 h, respectively, and was GRPR-mediated as shown by inhibition with a coinjection of excess peptide. MicroPET imaging of (64)Cu-DOTA-Aoc-BN(7-14) in athymic nude mice bearing subcutaneous PC-3 tumors showed good tumor localization. Further studies with (64)Cu-pyruvaldehyde-bis(N(4)-methylthiosemicarbazone) ((64)Cu-PTSM) suggested that low blood flow to the PC-3 tumors may have limited the localization of (64)Cu-DOTA-Aoc-BN(7-14). This study demonstrates that (64)Cu-DOTA-Aoc-BN(7-14) can be used to detect GRPR-positive tumors by PET imaging.  相似文献   

18.
Sentinel lymph node (SLN) biopsy is now standard practice in the management of many breast cancer patients. Localization protocols vary in complexity and rates of success. The least complex involve only intraoperative gamma counting of radiotracer uptake or intraoperative visualization of blue-dye uptake; the most complex involve preoperative gamma imaging, intraoperative counting and intraoperative dye visualization. Intraoperative gamma imaging may improve some protocols. This study was conducted to obtain preliminary experience and information regarding intraoperative imaging. Sixteen patients were enrolled: 8 in a protocol that included intraoperative counting and dye visualization (probe/dye), 8 in a protocol that involved intraoperative imaging, counting and dye visualization (camera/probe/dye). Preoperative imaging of all 16 patients was performed using a GE 500 gamma camera with a LEAP collimator (300 cpm/μCi). The results of this imaging were not, however, given to the surgeon until the surgeon had completed the procedures required for the study. A Care Wise C-Trak probe was used for intraoperative counting. A Gamma Medica Inc. GammaCAM/OR (12.5 × 12.5 cm FOV) with a LEHR collimator (135 cpm/μCi) was used for intraoperative imaging. Times from start of surgery to external detection of a radioactive focus and to completion of excision of SLNs were recorded. Foci were detected preoperatively via imaging in 16/16 patients. Intraoperative external detection using the probe was accomplished in less than 4 min (mean = 1.5 min) in 15/16 patients, and via intraoperative imaging in 6/8 patients. The average time for completion of excision of nodes was 19 min for probe/dye and 28 min for camera/probe/dye. In one probe/dye case, review of the preoperative images prompted the surgeon to resume axillary dissection and remove one additional SLN.  相似文献   

19.
Affibody molecules have received significant attention in the fields of molecular imaging and drug development. However, Affibody scaffolds display an extremely high renal uptake, especially when modified with chelators and then labeled with radiometals. This unfavorable property may impact their use as radiotherapeutic agents in general and as imaging probes for the detection of tumors adjacent to kidneys in particular. Herein, we present a simple and generalizable strategy for reducing the renal uptake of Affibody molecules while maintaining their tumor uptake. Human serum albumin (HSA) was consecutively modified by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS ester) and the bifunctional cross-linker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC). The HER2 Affibody analogue, Ac-Cys-Z(HER2:342), was covalently conjugated with HSA, and the resulting bioconjugate DOTA-HSA-Z(HER2:342) was further radiolabeled with ??Cu and 111In and evaluated in vitro and in vivo. Radiolabeled DOTA-HSA-Z(HER2:342) conjugates displayed a significant and specific cell uptake into SKOV3 cell cultures. Positron emission tomography (PET) investigations using ??Cu-DOTA-HSA-Z(HER2:342) were performed in SKOV3 tumor-bearing nude mice. High tumor uptake values (>14% ID/g at 24 and 48 h) and high liver accumulations but low kidney accumulations were observed. Biodistribution studies and single-photon emission computed tomography (SPECT) investigations using 111In-DOTA-HSA-Z(HER2:342) validated these results. At 24 h post injection, the biodistribution data revealed high tumor (16.26% ID/g) and liver (14.11% ID/g) uptake but relatively low kidney uptake (6.06% ID/g). Blocking studies with coinjected, nonlabeled Ac-Cys-Z(HER2:342) confirmed the in vivo specificity of HER2. Radiolabeled DOTA-HSA-Z(HER2:342) Affibody conjugates are promising SPECT and PET-type probes for the imaging of HER2 positive cancer. More importantly, DOTA-HSA-Z(HER2:342) is suitable for labeling with therapeutic radionuclides (e.g., ??Y or 1??Lu) for treatment studies. The approach of using HSA to optimize the pharmacokinetics and biodistribution profile of Affibodies may be extended to the design of many other targeting molecules.  相似文献   

20.
In comparison to somatostatin receptor scintigraphy, gastrin receptor scintigraphy using 111In-DTPA-minigastrin (MG0) showed added value in diagnosing neuroendocrine tumors. We investigated whether the 68Ga-labeled gastrin analogue DOTA-MG0 is suited for positron emission tomography (PET), which could improve image quality. Targeting of cholecystokinin-2 (CCK2)/gastrin receptor-positive tumor cells with DOTA-MG0 labeled with either 111In or 68Ga in vitro was investigated using the AR42J rat tumor cell line. Biodistribution was examined in BALB/c nude mice with a subcutaneous AR42J tumor. In vivo PET imaging was performed using a preclinical PET-computed tomographic scanner. DOTA-MG0 showed high receptor affinity in vitro. Biodistribution studies revealed high tumor uptake of 68Ga-DOTA-MG0: 4.4 ± 1.3 %ID/g at 1 hour postinjection. Coadministration of an excess unlabeled peptide blocked the tumor uptake (0.7 ± 0.1 %ID/g), indicating CCK2/gastrin receptor-mediated uptake (p = .0005). The biodistribution of 68Ga-DOTA-MG0 was similar to that of 111In-DOTA-MG0. Subcutaneous and intraperitoneal tumors were clearly visualized by small-animal PET imaging with 5 MBq 68Ga-DOTA-MG0. 111In- and 68Ga-labeled DOTA-MG0 specifically accumulate in CCK2/gastrin receptor-positive AR42J tumors with similar biodistribution apart from the kidneys. AR42J tumors were clearly visualized by microPET. Therefore, 68Ga-DOTA-MG0 is a promising tracer for PET imaging of CCK2/gastrin receptor-positive tumors in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号