首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Liu Z  Xing M 《PloS one》2012,7(2):e31729

Background

This study was designed to explore the therapeutic potential of suppressing MAP kinase and PI3K/Akt pathways and histone deacetylase (HDAC) to induce the expression of sodium/iodide symporter (NIS) and radioiodine uptake in non-thyroid cancer cells.

Methods

We tested the effects of the MEK inhibitor RDEA119, the Akt inhibitor perifosine, and the HDAC inhibitor SAHA on NIS expression in thirteen human cancer cell lines derived from melanoma, hepatic carcinoma, gastric carcinoma, colon carcinoma, breast carcinoma, and brain cancers. We also examined radioiodine uptake and histone acetylation at the NIS promoter in selected cells.

Results

Overall, the three inhibitors could induce NIS expression, to various extents, in melanoma and all the epithelial carcinoma-derived cells but not in brain cancer-derived cells. SAHA was most effective and its effect could be significantly enhanced by RDEA119 and perifosine. The expression of NIS, at both mRNA and protein levels, was most robust in the melanoma cell M14, hepatic carcinoma cell HepG2, and the gastric carcinoma cell MKN-7 cell. Radioiodine uptake was correspondingly induced, accompanied by robust increase in histone acetylation at the NIS promoter, in these cells when treated with the three inhibitors.

Conclusions

This is the first demonstration that simultaneously suppressing the MAP kinase and PI3K/Akt pathways and HDAC could induce robust NIS expression and radioiodine uptake in certain non-thyroid human cancer cells, providing novel therapeutic implications for adjunct radioiodine treatment of these cancers.  相似文献   

4.
5.
The tyrosine kinase Lyn is involved in oncogenic signalling in several leukaemias and solid tumours, and we have previously identified a pathway centred on Cbp [Csk (C-terminal Src kinase)-binding protein] that mediates both enzymatic inactivation, as well as proteasomal degradation of Lyn via phosphorylation-dependent recruitment of Csk (responsible for phosphorylating the inhibitory C-terminal tyrosine of Lyn) and SOCS1 (suppressor of cytokine signalling 1; an E3 ubiquitin ligase). In the present study we show that fusing specific functional motifs of Cbp and domains of SOCS1 together generates a novel molecule capable of directing the proteasomal degradation of Lyn. We have characterized the binding of pY (phospho-tyrosine) motifs of Cbp to SFK (Src-family kinase) SH2 (Src homology 2) domains, identifying those with high affinity and specificity for the SH2 domain of Lyn and that are preferred substrates of active Lyn. We then fused them to the SB (SOCS box) of SOCS1 to facilitate interaction with the ubiquitination-promoting elongin B/C complex. As an eGFP (enhanced green fluorescent protein) fusion, these proteins can direct the polyubiquitination and proteasomal degradation of active Lyn. Expressing this fusion protein in DU145 cancer cells (but not LNCaP or MCF-7 cells), that require Lyn signalling for survival, promotes loss of Lyn, loss of caspase 3, appearance of an apoptotic morphology and failure to survive/expand. These findings show how functional domains of Cbp and SOCS1 can be fused together to generate molecules capable of inhibiting the growth of cancer cells that express high levels of active Lyn.  相似文献   

6.
7.
8.
9.
10.
Aberrant epigenetic silencing of tumor suppressor genes by promoter DNA hypermethylation and histone deacetylation plays an important role in the pathogenesis of cancer. The potential reversibility of epigenetic abnormalities encouraged the development of pharmacologic inhibitors of DNA methylation and histone deacetylation as anti-cancer therapeutics. (Pre)clinical studies of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors have yielded encouraging results, especially against hematologic malignancies. Recently, several studies demonstrated that DNMT and HDAC inhibitors are also potent angiostatic agents, inhibiting (tumor) endothelial cells and angiogenesis in vitro and in vivo. By reactivation of epigenetically silenced tumor suppressor genes with angiogenesis inhibiting properties, DNMT and HDAC inhibitors might indirectly - via their effects on tumor cells - decrease tumor angiogenesis in vivo. However, this does not explain the direct angiostatic effects of these agents, which can be unraveled by gene expression studies and examination of epigenetic promoter modifications in endothelial cells treated with DNMT and HDAC inhibitors. Clearly, the dual targeting of epigenetic therapy on both tumor cells and tumor vasculature makes them attractive combinatorial anti-tumor therapeutics. Here we review the therapeutic potential of DNMT and HDAC inhibitors as anti-cancer drugs, as evaluated in clinical trials, and their angiostatic activities, apart from their inhibitory effects on tumor cells.  相似文献   

11.
12.
13.
14.
15.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

16.
Reck is a membrane-anchored glycoprotein identified as a transformation suppressor. Accumulating evidence indicates that Reck negatively regulates a wide spectrum of matrix metalloproteinases and is commonly down-regulated in a variety of malignant solid tumors. Physiological cues that regulate Reck expression, however, remained unknown. In this study, we found that Reck expression was up-regulated at high cell density, low serum, or after treatment with some kinase inhibitors, such as PP2 (Src inhibitor), LY294002 (PI3-kinase inhibitor), and PF573228 (FAK inhibitor), in mouse embryo fibroblasts. Curve fitting indicated that the levels of Reck protein and Reck mRNA are quadratic in the cell density. Other factors, including serum, extracellular matrix components (type I collagen and fibronectin), the kinase inhibitors, and some of their oncogenic targets (v-Src and PIK3CA mutants), modify the shape of the quadratic curve. Comparison of these modifications implicated Src in Reck down-regulation under sparse conditions, PI3-kinase in serum-induced Reck down-regulation, and FAK in Reck down-regulation at high cell density. Fibronectin and type I collagen down-regulated Reck, supporting the role of integrin-FAK signaling in Reck down-regulation at high cell density. Our study has revealed multiple signaling pathways impinging on Reck in cultured mouse embryo fibroblasts and sets a foundation for future studies to find effective Reck inducers of potential value in cancer therapy.  相似文献   

17.
18.
19.
Microtubule nucleation is an essential step in the formation of the microtubule cytoskeleton. We recently showed that androgen and Src promote microtubule nucleation and γ-tubulin accumulation at the centrosome. Here, we explore the mechanisms by which androgen and Src regulate these processes and ask whether integrins play a role. We perturb integrin function by a tyrosine-to-alanine substitution in membrane-proximal NPIY motif in the integrin β1 tail and show that this mutant substantially decreases microtubule nucleation and γ-tubulin accumulation at the centrosome. Because androgen stimulation promotes the interaction of the androgen receptor with Src, resulting in PI3K/AKT and MEK/ERK signaling, we asked whether these pathways are inhibited by the mutant integrin and whether they regulate microtubule nucleation. Our results indicate that the formation of the androgen receptor-Src complex and the activation of downstream pathways are significantly suppressed when cells are adhered by the mutant integrin. Inhibitor studies indicate that microtubule nucleation requires MEK/ERK but not PI3K/AKT signaling. Importantly, the expression of activated RAF-1 is sufficient to rescue microtubule nucleation inhibited by the mutant integrin by promoting the centrosomal accumulation of γ-tubulin. Our data define a novel paradigm of integrin signaling, where integrins regulate microtubule nucleation by promoting the formation of androgen receptor-Src signaling complexes to activate the MEK/ERK signaling pathway.  相似文献   

20.
DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号