首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
水稻根表铁膜吸附镉及植株吸收镉的动态   总被引:8,自引:0,他引:8  
采用营养液培养法研究了Cd处理时间对有铁膜和无铁膜水稻根表吸附Cd及植株吸收Cd动态变化的影响.水稻根表铁膜由50 mg·L-1 Fe2+(Fe50)诱导形成.供试植株在含10 μmol·L-1Cd的营养液中生长不同时间后收获.结果表明, 随Cd处理时间的延长,无铁膜和有铁膜处理水稻根表DCB-Cd含量均为先增加后减少,Cd处理2 h达到最高,之后逐渐下降并趋于稳定. 根系和地上部Cd含量均持续上升,Cd处理8 h前增加缓慢,8 h后增加幅度加大.有铁膜水稻根系和地上部Cd含量增加幅度均低于无铁膜水稻.有铁膜处理DCB-Cd含量、根系和地上部Cd含量均低于无铁膜处理.表明铁膜不影响水稻各部分Cd含量随时间的变化趋势;不同Fe处理之间根系和地上部Cd含量的差异可能与根系含Fe量有关.  相似文献   

3.
4.
Cadmium absorption and transportation pathways in plants   总被引:1,自引:0,他引:1  
Controlling the uptake, transport, translocation, and accumulation of excessive amounts of cadmium from polluted environments is critical for plants and, consequently, humans with regard to food safety. Plants adopt various cellular and molecular mechanisms to minimize Cd toxicity. Upon exposure to Cd, plants initially implement avoidance strategies, such as production of organic acids, chelation, and sequestration, to prevent metal access to root cells. Nevertheless, Cd can be transported through the roots, stems, and leaves via apoplastic and symplastic pathways. These processes have been controlled by specific sites at the root surface and root cortex, in cells responsible for loading the root xylem, at the transition between the vascular systems of the root and the shoot, and in connecting tissues and cells at the stem. Although resistance to heavy metal cadmium can be achieved by either avoidance or tolerance, genetic basis to tolerance is therefore implied, in that these mechanisms are heritable attributes of tolerant mutants or genotypes.  相似文献   

5.
为了探讨外源钙对重金属镉(Cd)缓解南美蟛蜞菊Wedelia trilobata毛状根毒害的生理机理,采用溶液培养法研究了重金属Cd单独及其与Ca组合对南美蟛蜞菊毛状根生长、抗氧化酶超氧化物岐化酶(SOD)和过氧化物酶(POD)活性及对Cd2+吸收的影响。结果表明,Cd≤50μmol/L时促进毛状根生长;高于100μmol/LCd则抑制其生长,使其侧根短小,根尖变褐或变黑。与对照相比,不同浓度Cd培养的毛状根POD活性、SOD活性和MDA含量都比对照明显提高,但高于100μmol/L Cd培养的毛状根可溶性蛋白含量均比对照降低。与仅添加200μmol/L或300μmol/L Cd的毛状根相比,Cd和10~30 mmol/L Ca组合培养可促进毛状根生长,使其主、侧根变粗;提高其可溶性蛋白含量;降低其MDA含量、POD活性及SOD活性。原子吸收分光光度法测定结果表明,南美蟛蜞菊毛状根能吸收和吸附重金属Cd2+,当Cd2+浓度为100μmol/L时毛状根对Cd2+的吸收量最大,而Cd2+浓度为300μmol/L时毛状根对Cd2+的吸附量最大。外源加入10~30 mmol/L Ca2+可显著减少毛状根对Cd2+的吸收和吸附,并可调节其抗氧化酶活性,降低其膜脂过氧化水平而解除重金属镉对毛状根生长的抑制或毒害。  相似文献   

6.
植物防御素调控水稻镉积累的新机制   总被引:1,自引:0,他引:1  
黄新元  赵方杰 《植物学报》2018,53(4):451-455
镉是我国农产品的主要重金属污染物之一。随着我国土壤重金属污染问题日益突出, 包括稻米在内的农产品重金属超标时常发生。如何防控重金属在作物可食部位的积累, 在保证农产品安全的同时将农田重金属进行移除修复, 已成为我国农业生产急需解决的问题。最近, 中科院上海生命科学院植物生理生态所龚继明研究组和中国水稻所钱前研究组克隆到1个特异调控镉在水稻(Oryza sativa)叶片中积累的主效QTL基因CAL1CAL1编码1个植物防御素类似蛋白, 通过与镉进行螯合, 将镉从维管束木质部薄壁细胞中分泌出来, 进入木质部参与长距离转运, 从而定向调控镉在水稻叶片等营养器官的积累而不影响籽粒镉的积累。该研究加深了人们对重金属镉在植物体内的转运和再分配机理的认识, 同时也为培育秸秆镉高积累而籽粒镉含量达标的“修复型”水稻品种提供有价值的新基因。研究成果具有重要的理论意义和应用价值。  相似文献   

7.
Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanismsinvolved in the root to shoot translocation of Cd are not wellunderstood. In this study, we characterized Cd transfer fromthe root medium to xylem in this species. Arabidopsis halleriaccumulated 1,500 mg kg–1 Cd in the shoot without growthinhibition. A time-course experiment showed that the releaseof Cd into the xylem was very rapid; by 2 h exposure to Cd,Cd concentration in the xylem sap was 5-fold higher than thatin the external solution. The concentration of Cd in the xylemsap increased linearly with increasing Cd concentration in theexternal solution. Cd transfer to the xylem was completely inhibitedby the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone(CCCP). Cd concentration in the xylem sap was decreased by increasingthe concentration of external Zn, but enhanced by Fe deficiencytreatment. Analysis with 113Cd-nuclear magnetic resonance (NMR)showed that the chemical shift of 113Cd in the xylem sap wasthe same as that of Cd(NO3)2. Metal speciation with Geochem-PCalso showed that Cd occurred mainly in the free ionic form inthe xylem sap. These results suggest that Cd transfer from theroot medium to the xylem in A. halleri is an energy-dependentprocess that is partly shared with Zn and/or Fe transport. Furthermore,Cd is translocated from roots to shoots in inorganic forms.  相似文献   

8.
Absorption and translocation of Cd in bush beans (Phaseolus vulgaris)   总被引:4,自引:0,他引:4  
A series of experiments was conducted to examine some factors affecting the absorption and translocation of Cd in young bean plants ( Phaseolus vulgaris L. cv. Bulgarian). Absorption of Cd by roots was reduced in the presence of other cations of increasing valency or ionic radii. Reduced absorption was also found in the presence of EDTA. Concentration of Cd in exudates from excised stems increased with increased passage of Cd solutions and approached the concentration in the external medium (4.5 μ M Cd). This was apparently associated with saturation of adsorption sites in the stems. The stem behaved as a cation exchange column resulting in a chromatographic distribution of Cd towards the top of the plant. These experiments indicate that Cd existed in the xylem fluid as a free or weakly complexed cation. Additional experiments showed that the total amount of Cd absorbed by bean plants was elevated by inducing higher transpiration rates. The effect of water flux on Cd transport indicated apoplastic flow to the stele.  相似文献   

9.
我国的稻米镉超标对国民身体健康造成严重威胁, 而选育低镉积累的水稻(Oryza sativa)品种是降低稻米镉含量行之有效的策略, 因此有必要了解水稻对镉的积累特性及其生理过程和相关功能基因。该文概述了镉在水稻根部的吸收、木质部中的装载与运输、茎节中的分配、叶片中再分配以及籽粒镉积累等过程的生理和分子机制研究进展, 以期为低镉水稻的选育和安全生产提供理论参考。  相似文献   

10.
Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard   总被引:48,自引:0,他引:48       下载免费PDF全文
Indian mustard (Brassica juncea L.), a high biomass crop plant, accumulated substantial amounts of cadmium, with bioaccumulation coefficients (concentration of Cd in dry plant tissue/concentration in solution) of up to 1100 in shoots and 6700 in roots at nonphytotoxic concentrations of Cd (0.1 [mu]g/mL) in solution. This was associated with a rapid accumulation of phytochelatins in the root, where the majority of the Cd was coordinated with sulfur ligands, probably as a Cd-S4 complex, as demonstrated by x-ray absorption spectroscopy. In contrast, Cd moving in the xylem sap was coordinated predominantly with oxygen or nitrogen ligands. Cd concentrations in the xylem sap and the rate of Cd accumulation in the leaves displayed similar saturation kinetics, suggesting that the process of Cd transport from solution through the root and into the xylem is mediated by a saturable transport system(s). However, Cd translocation to the shoot appeared to be driven by transpiration, since ABA dramatically reduced Cd accumulation in leaves. Within leaves, Cd was preferentially accumulated in trichomes on the leaf surface, and this may be a possible detoxification mechanism.  相似文献   

11.
The effects of cadmium chloride concentration on root, bulb and shoot growth of garlic (Allium sativum L.), and the uptake and accumulation of Cd2+ by garlic roots, bulbs and shoots were investigated. The range of cadmium chloride (CdCl2 x 2.5H2O) concentrations was 10(-6) - 10(-2) M. Cadmium stimulated root length at lower concentrations (10(-6) - 10(-5) M) significantly (P < 0.005) during the entire treatment period. The seedlings exposed to 10(-3) - 10(-2) M Cd exhibited substantial growth reduction (P < 0.005), but did not develop chlorosis. Garlic has considerable ability to remove Cd from solutions and accumulate it. The Cd content in roots of garlic increased with increasing solution concentration of Cd2+. The roots in plants exposed to 10(-2) M Cd accumulated a large amount of Cd. approximately 1,826 times the control. The Cd contents in roots of plants treated with 10(-3), 10(-4), 10(-5) and 10(-6) M Cd were approximately 114, 59, 24 and 4 times the control, respectively. However, the plants transported only a small amount of Cd to their bulbs and shoots and concentrations in these tissues were low.  相似文献   

12.
In order to investigate the physiological basis of the differential Cd distribution and the degree of variation of this Cd distribution among maize inbred lines, six inbreds designated earlier as ‘shoot Cd excluders’ (B73, H99, and H96) and ‘non-shoot Cd excluders’ (B37, H98, and N28) were grown in nutrient solution culture at different external Cd levels or at different pH. The characterization of the inbreds according to their shoot/root partitioning of Cd was consistent, independent of pH or level of Cd supply. The Cd concentrations in the plants were highest at the highest pH of the solution cultures. Generally, there was a positive correlation between the Cd concentrations in shoots and xylem exudates. It was shown that the Cd concentration in the roots is particularly important in the Cd distribution process. Above a ‘critical’ internal Cd concentration in the roots, specific for each inbred, the ability to retain Cd is strongly diminished. It is concluded that structural and/or physiological characteristics of the roots are involved in Cd partitioning.  相似文献   

13.
We studied how the relationship between cadmium (Cd) toxicity and oxidative stress influenced the growth, photosynthetic efficiency, lipid peroxidation, and activity of ntioxidative enzymes in the roots and leaves of rice(Oryza sativa L Dongjin). Plants were exposed to Cd for 21 d. Both seedling growth and photosynthetic efficiency decreased gradually with increasing cadmium concentrations. Lipid peroxidation increased slowly in both roots and leaves, causing oxidative stress. However, each tissue type responded differently to Cd concentrations with regard to the induction/ inhibition of antioxidative enzymes. The activity of Superoxide dismutase (SOD) increased in both roots and leaves. Ascorbate peroxidase (APX) activity increased in leaves treated with up to 0.25 μM Cd, then decreased gradually at higher concentrations. In contrast, APX activity in roots increased and remained constant between 0.25 and 25 μM Cd. Enhanced peroxidase (POD) activity was recorded for treatments with up to 25/M Cd, gradually decreasing at higher concentrations in the leaves but remaining unchanged in the roots. Catalase (CAT) activity increased in the roots, but decreased in the leaves, whereas the activity of glutathione reductase (GR) was enhanced in both roots and leaves, where it remained elevated at higher Cd concentrations. These results suggest that rice seedlings tend to cope with free radicals generated by Cd through coordinated, enhanced activities of the antioxidative enzymes involved in detoxification.  相似文献   

14.
Rice (Oryza sativa L. cv Oochikara) is a typical silicon-accumulating plant, but the mechanism responsible for the high silicon uptake by the roots is poorly understood. We characterized the silicon uptake system in rice roots by using a low-silicon rice mutant (lsi1) and wild-type rice. A kinetic study showed that the concentration of silicon in the root symplastic solution increased with increasing silicon concentrations in the external solution but saturated at a higher concentration in both lines. There were no differences in the silicon concentration of the symplastic solution between the wild-type rice and the mutant. The form of soluble silicon in the root, xylem, and leaf identified by (29)Si-NMR was also the same in the two lines. However, the concentration of silicon in the xylem sap was much higher in the wild type than in the mutant. These results indicate that at least two transporters are involved in silicon transport from the external solution to the xylem and that the low-silicon rice mutant is defective in loading silicon into xylem rather than silicon uptake from external solution to cortical cells. To map the responsible gene, we performed a bulked segregant analysis by using both microsatellite and expressed sequence tag-based PCR markers. As a result, the gene was mapped to chromosome 2, flanked by microsatellite marker RM5303 and expressed sequence tag-based PCR marker E60168.  相似文献   

15.
Experiments were carried out to investigate the effects of root citric acid on uptake and initial distribution of cadmium (Cd) in tomato plants (Lycopersicon esculentum, cv. Tiny Tim). Cd was measured by γ-spectrometry, using 115Cd spikes. Citric acid was measured by UV-detection, and, after spiking with 14C-citric acid, by β-spectrometry. Cd was applied for 48 h periods, in control experiments, in the presence of citric acid, and after 24 h plant pre-incubation with citric acid. Pre-incubation resulted in two-fold increases in fast-exchangeable amounts of root citric acid, as measured by the presence of citric acid in xylem exudates of decapitated and pressurized roots. Simultaneous application of Cd and citric acid did not change Cd accumulation in total plants and in the roots, nor did any significant change occur with respect to Cd root-to-shoot transport, and Cd concentrations in shoot tissues and xylem fluid. After citric acid pre-incubation, total plant uptake of Cd increased twofold, without any significant change in Cd accumulation in the roots. Cd root-to-shoot transport was increased 5–6 fold, and Cd concentrations in shoot tissues and xylem fluid were increased 6–8 fold. Speciation calculations indicated that, under the conditions applied, xylem Cd may be, at least partly, complexed in citric acid. A C Borstlap Section editor  相似文献   

16.

Purpose

The current study aimed to test the hypothesis that the variations in shoot Cd accumulation among peanut cultivars was ascribed to the difference in capacity of competition with Fe transport, xylem loading and transpiration.

Methods

A hydroponics experiment was conducted to determine the plant biomass, gas exchange, and Cd accumulation in Fe-sufficient or -deficient plants of 12 peanut cultivars, at low Cd level (0.2 μM CdCl2).

Results

Peanut varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Qishan 208 and Xvhua 13 showed a higher capacity for accumulating Cd in their shoots. Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TF root to shoot and TF root to stem, while TF stem to leaf remained unaffected. Fe deficiency-induced increase rates of Cd concentration and total Cd amount in roots and leaves were negatively correlated with the values in Fe-sufficient plants. Transpiration rate was positively correlated with leaf Cd concentration, TF root to shoot, TF root to stem and TF stem to leaf.

Conclusions

The difference in shoot Cd concentration among peanut cultivars was mainly ascribed to the difference in Fe transport system, xylem loading capacity and transpiration.  相似文献   

17.
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The K(m) of (109)Cd influx into roots was similar in both ecotypes, while the V(max) was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. (109)Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of (109)Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher (109)Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3-5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii.  相似文献   

18.
Three strawberry (Fragaria × ananassa Duch.) cultivars Rainier, Totem and Selva were grown under greenhouse conditions in a Parkhill sandy loam soil with a background DTPA-extractable Cd concentration of 0.18 mg kg-1 and a pH of 5.1. Experimental treatments included combinations of 4 Cd applications (0, 15, 30 and 60 mg Cd kg-1 soil) applied as CdSO4 and 2 soil pH values 5.1 and 6.8. Both the application of Cd and pH of the soil significantly affected plant growth, yield and Cd accumulation in plant tissue anf fruit. Although roots accumulated the highest concentrations of Cd of all plant parts investigated, increased soil Cd application reduced leaf weight more than root weight. In general, yield of strawberries was decreased by an increase in amount of soil-applied Cd, however the yield response varied among cultivars. At 60 mg Cd kg-1 soil, yield of Rainier cultivar was reduced to 17.6% of control plants. Over 90% of total Cd taken up by plants grown in Cd-treated soil accumulated in roots, regardless of the Cd level in the soil. Root Cd concentrations ranged from 2.6 mg kg-1 (control plants) to 505.7 mg kg-1 (Totem plants grown in soil at highest Cd and a soil pH 5.1) and were directly related to soil Cd concentrations. Cd translocation from roots to leaves and fruit was very limited, resulting in a maximum Cd concentration in root leaf tissue of 10.2 mg kg-1. Accumulation of Cd in fruit was found to correlate well with leaf Cd, although even at the highest amount of applied Cd, fruit Cd concentration did not exceed 700 g kg-1 of fresh weight.Contribution no. 951  相似文献   

19.
水稻土施硅对土壤-水稻系统中镉的降低效果   总被引:7,自引:0,他引:7  
水稻中镉的积累造成人类健康的风险,增加水稻硅素能减轻镉中毒症状,降低稻米镉积累,但是硅对重金属的作用机理尚不清楚。主要研究了在中度和高度镉污染的土壤中,通过施用固态和液态的富硅物质对土壤-水稻系统中镉的吸收和转运的影响,探明决定镉和硅在根与芽的质外体和共质体中的作用机理。试验结果表明:(1)在中度和高度污染的土壤中,镉在土壤-作物系统中的转移和积累情况是不同的,可以通过富硅物质中的单硅酸与镉离子的相互作用,增加镉在硅物质表面的吸附来减少镉在土壤中的流动;(2)富硅物质可以降低水稻根和芽中镉的积累,在高度镉污染的情况下,施用硅可以使镉大量积累在水稻根及其共质体中,并降低根及其共质体中镉的转换和积累;(3)新鲜土壤中水萃取态的单硅酸含量与镉在土壤-作物系统中的流动性、转运以及积累等主要参数密切相关。  相似文献   

20.
To assess the impact of enhanced root vacuole cadmium (Cd) sequestration on leaf Cd accumulation under a low Cd dose, as generally occurs in agriculture, leaf Cd accumulation was examined in field-grown tobacco plants expressing genes encoding the high-capacity-Cd, tonoplast-localized, divalent cation/H antiporters AtCAX4 and AtCAX2 (AtCAX, Arabidopsis cation exchanger). It has been shown previously that root tonoplast vesicles isolated from plants expressing these genes, directed by root-selective promoters, show enhanced Cd transport activity, and young plants show enhanced root Cd accumulation when grown in solution culture containing 0.02 µ m Cd, a moderate Cd dose. In this article, we present results which show that the lower leaves of mature plants expressing AtCAX2 or AtCAX4 , under the control of two different root-selective promoters, accumulate 15%–25% less lamina Cd than control plants when grown in the field (3 years, three different collection methods). Reciprocal grafting experiments of AtCAX2 shoots onto control roots (and vice versa), grown in solution culture with 0.005 µ m Cd, indicated that the root controls Cd translocation and accumulation in the shoot in control and AtCAX2 and AtCAX4 tobacco plants exposed to low Cd concentration. The results are consistent with a model in which supplementation of Cd/H antiporter activity in root cell tonoplasts enhances root Cd sequestration, resulting in decreased translocation of Cd to the shoot of field-grown plants. These results suggest that human Cd intake from food and tobacco use could be reduced via the enhancement of root vacuolar sequestration of this pollutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号