首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Evolution, biogeography, and patterns of diversification in passerine birds   总被引:6,自引:0,他引:6  
This paper summarizes and discusses the many new insights into passerine evolution gained from an increased general interest in avian evolution among biologists, and particularly from the extensive use of DNA sequence data in phylogenetic reconstruction. The sister group relationship between the New Zealand rifleman and all other passerines, indicates the importance of the former southern supercontinent Gondwana in the earliest evolution of this group. Following the break-up of Gondwana, the ancestors of other major passerine groups became isolated in Australia (oscines), South America (New World suboscines), and possibly, the then connected Kerguelen Plateau/India/Madagascar tectonic plates (Old World suboscines). The oscines underwent a significant radiation in the Australo-Papuan region and only a few oscine lineages have spread further than to the nearby Southeast Asia. A remarkable exception is the ancestor to the vast Passerida radiation, which now comprises 35% of all bird species. This group obviously benefitted greatly from the increased diversity in plant seed size and morphology during the Tertiary. The lyrebirds (and possibly scrub-birds) constitute the sister group to all other oscines, which renders "Corvida" ( sensu Sibley and Ahlquist 1990) paraphyletic. Sequence data suggests that Passerida, the other clade of oscines postulated based on the results of DNA–DNA hybridizations, is monophyletic, and that the rockfowl and rock-jumpers are the most basal members of this clade. The suboscines in the Old World (Eurylamides) and the New World (Tyrannides), respectively, are sister groups. A provisional, working classification of the passerines is presented based on the increased understanding of the major patterns of passerine evolution.  相似文献   

3.
The striking diversity of sperm shape across the animal kingdom is still poorly understood. Postcopulatory sexual selection is an important factor driving the evolution of sperm size and shape. Interestingly, morphometric sperm traits, such as the length of the head, midpiece and flagellum, exhibit a strong positive phenotypic correlation across species. Here we used recently developed comparative methods to investigate how such phenotypic correlations between morphometric sperm traits may evolve. We compare allometric relationships and evolutionary trajectories of three morphometric sperm traits (length of head, midpiece and flagellum) in passerine birds. We show that these traits exhibit strong phenotypic correlations but that allometry varies across families. In addition, the evolutionary trajectories of the midpiece and flagellum are similar while the trajectory for head length differs. We discuss our findings in the light of three scenarios accounting for correlated trait evolution: (i) genetic correlation; (ii) concerted response to selection acting simultaneously on different traits; and (iii) phenotypic correlation between traits driven by mechanistic constraints owing to selection on sperm performance. Our results suggest that concerted response to selection is the most likely explanation for the phenotypic correlation between morphometric sperm traits.  相似文献   

4.
Declining diversification rates over time are a well-established evolutionary pattern, often interpreted as indicating initial rapid radiation with filling of ecological niche space. Here, we test the hypothesis that island radiations may show constant net diversification rates over time, due to continued expansion into new niche space in highly dispersive taxa. We investigate diversification patterns of four passerine bird families originating from the Indo-Pacific archipelagos, and link these to biogeographic patterns to provide independent indications of niche filling. We find a declining diversification rate for only one family, the Paradisaeidae (41 species). These are almost completely restricted to New Guinea, and have on average smaller species ranges and higher levels of species richness within grid cells than the other three families. In contrast, we cannot reject constant diversification rates for Campephagidae (93 species), Oriolidae (35 species), and Pachycephalidae (53 species), groups that have independently colonized neighboring archipelagos and continents. We propose that Paradisaeidae have reached the diversity limit imposed by their restricted distribution, whereas high dispersal and colonization success across the geologically dynamic Indo-Pacific archipelagos may have sustained high speciation rates for the other three families. Alternatively, increasing extinction rates may have obscured declining speciation rates in those three phylogenies.  相似文献   

5.
Sex pheromones of two noctuid moths   总被引:2,自引:0,他引:2  
  相似文献   

6.
Migratory strategies of birds require complex orientation mechanisms, morphological adaptations, and life-history adjustments. From an evolutionary perspective, it is important to know how fast this complex combination of traits can evolve. We analyzed mitochondrial control-region DNA sequences in 241 blackcaps (Sylvia atricapilla) from 12 populations with different migratory behaviors. The sample included sedentary populations in Europe and Atlantic archipelagos and migratory populations with different distances of migration, from regional to intercontinental migrations, and different heading directions (due to a migratory divide in central Europe). There was no genetic structure between migratory and sedentary populations, or among populations from different biogeographic areas (Atlantic islands, the Iberian Peninsula, or the continent), however we found evidence of a genetic structure when comparing populations located on either side of the migratory divide. These findings support an independent evolution of highly divergent migratory strategies in blackcaps, occurring after a postglacial colonization of the continent along western and eastern routes. Accordingly, mismatch-distribution analyses suggested an expansion of blackcaps from a very small population size, and time estimates dated such an expansion during the last postglacial period. However, the populations in Gibraltar, located in a putative Mediterranean refuge, appeared to be independent of these processes, showing evidence of restricted gene flow with other populations and demonstrating insignificant historical changes in effective population size. Our results show that the interruption of gene flow between migratory and sedentary populations is not necessary for the maintenance of such a polymorphism, and that even the most divergent migratory strategies of a bird species are susceptible to evolution in response to historical environmental changes.  相似文献   

7.
Abstract

Migration is a biologically distinct and unique phenomenon that enables the birds to migrate twice-a-year between the breeding and wintering grounds. These movements are known as spring and autumn migration, respectively. Depending on their inherent programming, the migratory birds may fly during day or night or both. Different environmental factors such as, temperature, food, predator pressure and physiological demands of energy storage and expenditure, contribute to the pattern of migrations, day or nighttime. Since, most of them are nighttime migrants they have to make dramatic changes in their physiology and behavior to transform them from being diurnal to predominantly nocturnal. These changes result in different life history stages (LHSs) such as migration, reproduction and molt, in their annual cycle, which are regulated by endogenous circadian and circannual clocks. As a result, the birds start preparing well in advance for the approaching LHS. The present review focuses on behavioral strategies of a nocturnal migrant and understanding of the possible physiological responses to ensure successful migration.  相似文献   

8.
9.
In some birds, males defend two spatially separated territories and attract females to each one in turn. it has been proposed that this behaviour, referred to as polyterritoriality, allows males to conceal their marital status, thereby deceiving females into accepting polygyny against their best interests. The deception hypothesis has gained general acceptance as an explanation for polyterritoriality in birds, but until recently the empirical basis for the hypothesis rested almost entirely on studies of Swedish populations of the pied flycatcher (Ficedula hypoleuca). New findings, emerging from further studies of the pied flycatcher and of other species, suggest several alternative selection pressures that may have favoured polyterritoriality.  相似文献   

10.
Knowing how species’ traits relate to processes that underlie occupancy patterns such as colonisation and population persistence, is important for our understanding of how species survive in fragmented and changing landscapes. We used automatic UV light-traps to sample noctuid moths on two remote islands, and compared traits of island occupants with those of a species pool from mainland southeast Sweden. Widely distributed species, generalist species, species with a long adult activity period and species active late in the summer had higher probability of occupancy on the remote islands. The results were consistent between islands. The traits of host plant specificity and species with an adult activity period during late summer remained robust and were statistically significant after controlling for any possible phylogenetic bias. This indicates that species exhibiting those traits survive better when habitat and climate changes. It is crucial to include our results in; (1) conservation planning, e.g. when devising conservation measures in fragmented landscapes; (2) for predictions of future occupancy patterns; and (3) ecosystem impact assessments, e.g. the importance of moths as pollinators, herbivores and being the functional link between parasitoids, plants, consumers and predators.  相似文献   

11.
12.
Spike activity of the B cell, a unit in the tympanic organ of noctuid moths, was monitored during both stationary flight and acoustic stimulation. This neuron was previously considered (Treat and Roeder, 1959) unresponsive to sound and was thought to be a sensor for thoracic deformations accompanying flight movements. The present study did not reveal changes in B cell spike repetition rate related to active wing flapping, but did reveal a decline in the tonic repetition rate with the onset of an acoustic stimulus. Experimental results indicate that this inhibition of B spike activity is, at least in part, indirect, with the acoustic sense cells serving as the primary receptors. B cell inhibition is most marked with rapidly pulsed, relatively intense bursts of ultrasound. Lowintensity continuous tones evoke little or no change in the B spike repetition rate. The relationship between B spike activity and that of the acoustic sense cells (A cells) is complex. There is roughly an inverse correlation between the two spike activities with the onset and with the cessation of an acoustic stimulus, but B spike activity changes during the stimulus with no concomitant change in A cell spike activity. The possible significance of this complex functioning is considered in relation to avoidance behaviour in flying moths.  相似文献   

13.
Summary We analysed body mass and moult data of six passerine species along their autumn migration route from northern Europe to North Africa and derived hypothetical models of the organisation of their migration in terms of fuel store accumulation. We analysed data of 46,541 first-year birds from 34 trapping sites, sampled in a network of collaborating European and African ringing stations. After accounting for effects of time of day and size, there were marked differences between the six species examined in the change of body mass along the migration route and in the timing of moult. Garden Warblers (Sylvia borin) and Pied Flycatchers (Ficedula hypoleuca) underwent their postjuvenile moult prior to migration and increased their average body mass along the migration route. Sedge Warblers (Acrocephalus schoenobaenus) also increased body mass towards the south, but started the migration bout without further refuelling well before the Sahara and moulted mainly in the wintering grounds. Reed Warblers (Acrocephalus scirpaceus) and Whitethroats (Sylvia communis) migrated while still moulting and did not increase average body mass towards south. They accumulated the energy needed to fly over the Sahara just before it. Spotted Flycatchers (Muscicapa striata) behaved in the same way, but contrary to Reed Warblers and Whitethroats they did not accumulate much fat stores in North Africa, which might urge them to stop and fuel up regularly in the Sahara. In the course of the season average body mass of all species increased slightly, which enabled them to migrate faster. In general, average body mass of first-year birds in northern and central Europe during the migration period was comparable to that of adults during breeding.
Körpermassen von sechs Arten von Langstreckenziehern entlang des Herbstzugweges
Zusammenfassung Wir analysierten Körpermassen- und Mauserdaten von sechs Singvogelarten auf dem Herbstzug entlang ihres Zugweges von Nordeuropa bis Nordafrika. Die Körpermassen von 46 541 diesjährigen Vögeln, die auf 34 Beringungsstationen im Rahmen eines internationalen Projektes gesammelt wurden, sind die Grundlage dieser Untersuchung. Neben der Entwicklung der Körpermassen entlang des Zugweges untersuchten wir den Einfluss der Mauser, des Fangdatums, der Tageszeit und der Körpergröße auf die Körpermasse. Mausernde Vögel waren schwerer als nichtmausernde mit der gleichen Fettmenge. Die Körpermasse nahm im Laufe der Saison und im Verlauf des Tages zu. Große Vögel (mit einer längeren 8. Handschwinge) waren schwerer als kleine. Gartengrasmücken (Sylvia borin) und Trauerschnäpper (Ficedula hypoleuca) wurden entlang des Zugweges kontinuierlich schwerer. Beide Arten machten die Jugendteilmauser hauptsächlich noch im Brutgebiet durch. Schilfrohrsänger (Acrocephalus schoenobaenus) wurden nach Süden ebenfalls etwas schwerer, aber sie begannen mit einem Reiseabschnitt ohne weiteren Fettaufbau schon in Mitteleuropa und mauserten ihr Kleingefieder hauptsächlich erst in Afrika. Die Körpermassen von Teichrohrsängern (Acrocephalus scirpaceus) und Dorngrasmücken (Sylvia communis) blieben nach Süden weitgehend konstant. Beide Arten lagerten die nötigen Energiereserven zum Überfliegen der Sahara erst kurz davor an. Sie trennten Jugendteilmauser und Zug nicht vollständig. Ähnlich verhielten sich Grauschnäpper (Muscicapa striata), doch im Gegensatz zu den zwei vorherigen Arten, wurden sie auch im Mittelmeergebiet nicht wesentlich fetter. Sie scheinen daher regelmässig in der Wüste zu rasten und zu fressen.
  相似文献   

14.
The receptor mechanism mediating the avoidance behaviour of flying noctuid moths in response to brief ultrasonic pulses may require only a single pair of acoustic sense cells, one A1 cell in each tympanic organ (Roeder, 1966c). Introduction of the fluorescent dye, procion yellow, into the nerve fibres leaving the tympanic organ has allowed the reconstruction of the central morphology of A1, the more sensitive of the two acoustic cells. The A1 axon follows a superficial course for the first ~100 μ auterior to its dorsal root of entry (3N1) into the thoracic ganglia, then plunges ventrally into the posterior mesothoracic neuropil where it branches. The posterior part reaches through two-thirds of the metathoracic ganglion. The anterior branch bifurcates in the anterior mesothoracic ganglion to give rise to a posteriorly directed branch extending through the ventral mesothoracic neuropil and an anterior branch which passes through the connective into the posterior half of the prothoracic ganglion. Here it ramifies along the midline. The cell remains strictly ipsi-lateral with numerous processes extending right up to the midline in the ventral neuropil of all three ganglia. This morphology correlates well with the map of sites from which A1 acoustic responses can be recorded in the central nervous system.  相似文献   

15.
16.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

17.
Biogeographic analyses of passerine birds demonstrate that suboscines are numerically dominant in South America, whereas oscines are dominant elsewhere. This suggests that oscines generally outcompete suboscines and that suboscine dominance likely persists in South America because of its long isolation from other continents, where oscines have diversified. One hypothesis for oscine competitive superiority is that oscines possess higher metabolic capacities than suboscines, and this favors oscines in most habitats. We tested this hypothesis by comparing summit metabolic rates (M(sum), maximum thermoregulatory metabolic rate) between oscines and suboscines using conventional and phylogenetically informed statistical approaches. We predicted that if the metabolic-capacity hypothesis is valid, then oscines should have higher M(sum) than suboscines. Both conventional and phylogenetically informed ANCOVA on regressions of log M(sum) against log mass showed that oscines had higher M(sum) than suboscines: least squares mean M(sum) was 74% greater for oscines. Moreover, conventional and phylogenetically informed multiple regressions identified log mass, winter-range temperature, and clade (oscines vs. suboscines) as significant effectors of log M(sum). Thus, oscines have generally higher M(sum) than suboscines, which is consistent with the metabolic-capacity hypothesis and suggests that metabolic capacity is one factor influencing the evolution of broad biogeographical patterns in passerines.  相似文献   

18.
1. Mobility is important for the understanding of how species survive in fragmented landscapes and cope with increasing rates of habitat and climate change. However, mobility is a difficult trait to explore and is poorly known in most taxa. Species traits have been studied in relation to range shifts, extinction risks, and responses to habitat area and isolation, and have also been suggested as good estimators of mobility. Here we explore the relation between mobility and species traits in noctuid moths. 2. We sampled noctuid moths by an automatic light‐trap on an island far out in the Baltic Sea. We compared traits of the non‐resident species on the island with traits of a species pool of assumed potential migrants from the Swedish mainland. 3. Mobility was significantly related to adult activity period, length of flight period, and the interaction between host‐plant specificity and distribution area. Widely distributed host‐plant generalists were more mobile than host‐plant specialists with more restricted distribution, and species with an adult activity period in August to September moved to the island to a higher extent than species with an adult activity period in May to July. Our results remained qualitatively robust in additional analyses, after controlling for phylogeny and including all species recorded on the island, except for the trait ‘length of flight period’. 4. Our results highlight the importance of the relation between mobility and species traits. Noctuid moths with certain traits move over longer distances than earlier known. This finding is important to include when predicting range dynamics in fragmented and changing landscapes, and when conservation measures of species are devised.  相似文献   

19.
Palaearctic migrant passerines and near-passerines which visit eastern Africa can be divided into six groups based on the latitude of their final wintering area. Species wintering further north in Africa tend (a) to breed in more southern parts of the Palaearctic, (b) to prefer drier habitats and (c) to feed more from the ground than those wintering further south. Many species use quite narrow passage routes through eastern Africa and, for some species, passage is centred further east in spring than in autumn. Southward migration can take more than 4 months from the Palaearctic breeding grounds and many birds stopover in the northern tropics from September to November. By contrast, the return migration takes only about 6 weeks. The timing and strategy of migration within Africa can be broadly related to seasonal patterns of rainfall and vegetation.  相似文献   

20.
Responses to acoustic stimulation of thoracic interneurons in noctuid moths   总被引:1,自引:0,他引:1  
In noctuid moths several types of thoracic interneurons process information from the A1 acoustic sense cell. The most frequently encountered types are repeaters and pulse markers. The present study shows that these interneurons belong to one of two physiological categories: ‘stable followers’ which are capable of following pulse repetition rates greater than 10 Hz, and ‘labile followers’ which respond erratically at a pulse repetition rate of 3 Hz and fail entirely when the rate reaches 5 Hz. A rôle for the labile followers in the avoidance flight response is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号