首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rab GTPase family   总被引:3,自引:0,他引:3  
Stenmark H  Olkkonen VM 《Genome biology》2001,2(5):reviews3007.1-reviews30077
The Rab family is part of the Ras superfamily of small GTPases. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane traffic pathways. In the GTP-bound form, the Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion.  相似文献   

2.
H M McBride  V Rybin  C Murphy  A Giner  R Teasdale  M Zerial 《Cell》1999,98(3):377-386
SNAREs and Rab GTPases cooperate in vesicle transport through a mechanism yet poorly understood. We now demonstrate that the Rab5 effectors EEA1 and Rabaptin-5/Rabex-5 exist on the membrane in high molecular weight oligomers, which also contain NSF. Oligomeric assembly is modulated by the ATPase activity of NSF. Syntaxin 13, the t-SNARE required for endosome fusion, is transiently incorporated into the large oligomers via direct interactions with EEA1. This interaction is required to drive fusion, since both dominant-negative EEA1 and synthetic peptides encoding the FYVE Zn2+ finger hinder the interaction and block fusion. We propose a novel mechanism whereby oligomeric EEA1 and NSF mediate the local activation of syntaxin 13 upon membrane tethering and, by analogy with viral fusion proteins, coordinate the assembly of a fusion pore.  相似文献   

3.
The fusion of transport vesicles with their cognate target membranes, an essential event in intracellular membrane trafficking, is regulated by SNARE proteins and Rab GTPases. Rab GTPases are thought to act prior to SNAREs in vesicle docking, but the exact biochemical relationship between the two classes of molecules is not known. We recently identified the early endosomal autoantigen EEA1 as an effector of Rab5 in endocytic membrane fusion. Here we demonstrate that EEA1 interacts directly and specifically with syntaxin-6, a SNARE implicated in trans-Golgi network to early endosome trafficking. The binding site for syntaxin-6 overlaps with that of Rab5-GTP at the C terminus of EEA1. Syntaxin-6 and EEA1 were found to colocalize extensively on early endosomes, although syntaxin-6 is present in the trans-Golgi network as well. Our results indicate that SNAREs can interact directly with Rab effectors, and suggest that EEA1 may participate in trans-Golgi network to endosome as well as in endocytic membrane traffic.  相似文献   

4.
Herpes simplex virus 1 (HSV1) is an enveloped virus that uses undefined transport carriers for trafficking of its glycoproteins to envelopment sites. Screening of an siRNA library against 60 Rab GTPases revealed Rab6 as the principal Rab involved in HSV1 infection, with its depletion preventing Golgi‐to‐plasma membrane transport of HSV1 glycoproteins in a pathway used by several integral membrane proteins but not the luminal secreted protein Gaussia luciferase. Knockdown of Rab6 reduced virus yield to 1% and inhibited capsid envelopment, revealing glycoprotein exocytosis as a prerequisite for morphogenesis. Rab6‐dependent virus production did not require the effectors myosin‐II, bicaudal‐D, dynactin‐1 or rabkinesin‐6, but was facilitated by ERC1, a factor involved in linking microtubules to the cell cortex. Tubulation and exocytosis of Rab6‐positive, glycoprotein‐containing membranes from the Golgi was substantially augmented by infection, resulting in enhanced and targeted delivery to cell tips. This reveals HSV1 morphogenesis as one of the first biological processes shown to be dependent on the exocytic activity of Rab6.   相似文献   

5.
Membrane recruitment of effector proteins by Arf and Rab GTPases   总被引:2,自引:0,他引:2  
In their GTP-bound form, Arf and Rab family GTPases associate with distinct organelle membranes, to which they recruit specific sets of effector proteins that regulate vesicular transport. The Arf GTPases are involved in the formation of coated carrier vesicles by recruiting coat proteins. On the other hand, the Rab GTPases are involved in the tethering, docking and fusion of transport vesicles with target organelles, acting in concert with the tethering and fusion machineries. Recent structural studies of the Arf1-GGA and Rab5-Rabaptin-5 complexes, as well as other effector structures in complex with the Arf and Rab GTPases, have shed light on the mechanisms underlying the GTP-dependent membrane recruitment of these effector proteins.  相似文献   

6.
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.  相似文献   

7.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

8.
Posttranslational geranylgeranylation of Rab GTPases is catalyzed by Rab geranylgeranyltransferase (RabGGTase), which consists of a catalytic alpha/beta heterodimer and an accessory Rab escort protein (REP). REP functions as a molecular chaperone that presents Rab proteins to the RabGGTase and after prenylation delivers them to their target membrane. Mutations in the REP-1 gene in humans lead to an X-chromosome-linked defect known as choroideremia, a progressive disease that inevitably culminates in complete blindness. Here we report in vitro assembly, purification, and crystallization of the monoprenylated Rab7GDP:REP-1 complex. X-Ray diffraction data for the REP-1:Rab7 complex were collected to 2.2-A resolution at the ESRF. The crystals belong to the orthorhombic space group P2(1)2(1)2 with unit-cell parameters a=64.3A, b=105.3A, c=132.6A. Preliminary structural analysis revealed the presence of one complex in the asymmetric unit. To understand the conformational changes in Rab protein on complex formation we also crystallized the GDP-bound form of Rab7 that diffracted to at least 1.8A on the in-house X-ray source.  相似文献   

9.
Rab GTPases play a fundamental role in the regulation of membrane traffic. Three different Rab5 isoforms have been reported but no differences in their function in endocytosis have been discovered. As the Rab5 isoforms show a conserved consensus site for Ser/Thr phosphorylation, we investigated whether this site was phosphorylated. Here, we report that the three Rab5 proteins are differentially recognized by different kinases. Rab5a is efficiently phosphorylated by extracellular-regulated kinase 1 but not by extracellular-regulated kinase 2, while cdc2 kinase preferentially phosphorylates Ser-123 of Rab5b. These findings strongly suggest that phosphorylation could be important to differentially regulate the function of the Rab5 isoforms.  相似文献   

10.
In eukaryotic cells Rab/Ypt GTPases represent a family of key membrane traffic controllers that associate with their targeted membranes via C-terminally conjugated geranylgeranyl groups. GDP dissociation inhibitor (GDI) is a general and essential regulator of Rab recycling that extracts prenylated Rab proteins from membranes at the end of their cycle of activity and facilitates their delivery to the donor membranes. Here, we present the structure of a complex between GDI and a doubly prenylated Rab protein. We show that one geranylgeranyl residue is deeply buried in a hydrophobic pocket formed by domain II of GDI, whereas the other lipid is more exposed to solvent and is skewed across several atoms of the first moiety. Based on structural information and biophysical measurements, we propose mechanistic and thermodynamic models for GDI and Rab escort protein-mediated interaction of RabGTPase with intracellular membranes.  相似文献   

11.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

12.
Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle.  相似文献   

13.
Protein prenylation is a widespread post-translational modification in eukaryotes that plays a crucial role in membrane targeting and signal transduction. RabGTPases is the largest group of post-translationally C-terminally geranylgeranylated. All Rabs are processed by Rab geranylgeranyl-transferase and Rab escort protein (REP). Human genetic defects resulting in the loss one of two REP isoforms REP-1, lead to underprenylation of RabGTPases that manifests in retinal degradation and blindness known as choroideremia. In this study we used a combination of microinjections and chemo-enzymatic tagging to establish whether Rab GTPases are prenylated and delivered to their target cellular membranes with the same rate. We demonstrate that although all tested Rab GTPases display the same rate of membrane delivery, the extent of Rab prenylation in 5 hour time window vary by more than an order of magnitude. We found that Rab27a, Rab27b, Rab38 and Rab42 display the slowest prenylation in vivo and in the cell. Our work points to possible contribution of Rab38 to the emergence of choroideremia in addition to Rab27a and Rab27b.  相似文献   

14.
Localization of Ras and Ras-like proteins to the correct subcellular compartment is essential for these proteins to mediate their biological effects. Many members of the Ras superfamily (Ha-Ras, N-Ras, TC21, and RhoA) are prenylated in the cytoplasm and then transit through the endomembrane system on their way to the plasma membrane. The proteins that aid in the trafficking of the small GTPases have not been well characterized. We report here that prenylated Rab acceptor protein (PRA1), which others previously identified as a prenylation-dependent receptor for Rab proteins, also interacts with Ha-Ras, RhoA, TC21, and Rap1a. The interaction of these small GTPases with PRA1 requires their post-translational modification by prenylation. The prenylation-dependent association of PRA1 with multiple GTPases is conserved in evolution; the yeast PRA1 protein associates with both Ha-Ras and RhoA. Earlier studies reported the presence of PRA1 in the Golgi, and we show here that PRA1 co-localizes with Ha-Ras and RhoA in the Golgi compartment. We suggest that PRA1 acts as an escort protein for small GTPases by binding to the hydrophobic isoprenoid moieties of the small GTPases and facilitates their trafficking through the endomembrane system.  相似文献   

15.
Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs. Here, we perform detailed structural, thermodynamic, and cellular analyses of the interactions between Rab14 and one of the class I FIPs, the Rab-coupling protein (RCP), to clarify the molecular aspects of the interaction. We find that Rab14 indeed binds to RCP, albeit with reduced affinity relative to conventional Rab11-FIP and Rab25-FIP complexes. However, in vivo, Rab11 recruits RCP onto biological membranes. Furthermore, biophysical analyses reveal a noncanonical 1:2 stoichiometry between Rab14-RCP in dilute solutions, in contrast to Rab11/25 complexes. The structure of Rab14-RCP reveals that Rab14 interacts with the canonical Rab-binding domain and also provides insight into the unusual properties of the complex. Finally, we show that both the Rab coupling protein and Rab14 function in neuritogenesis.  相似文献   

16.
Darchen F  Goud B 《Biochimie》2000,82(4):375-384
Rab proteins form the largest branch of the Ras superfamily of GTPases. They are localized to the cytoplasmic face of organelles and vesicles involved in the biosynthetic/secretory and endocytic pathways in eukaryotic cells. It is now well established that Rab proteins play an essential role in the processes that underlie the targeting and fusion of transport vesicles with their appropriate acceptor membranes. They perform this task through interactions with a wide variety of effector molecules. In this review, we illustrate recent advances in the field of Rab GTPases, taking as examples two proteins involved in the biosynthetic pathway, Rab3 and Rab6.  相似文献   

17.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   

18.
Geranylgeranylation is a post-translational modification of Rab GTPases that enables them to associate reversibly with intracellular membranes. Geranylgeranylation of Rab proteins is critical for their activity in controlling intracellular membrane transport. According to the currently accepted model for their action, newly synthesized Rab proteins are recruited by Rab escort protein (REP) and are presented to the Rab geranylgeranyl transferase (RabGGTase) which covalentely modifies the Rab protein with two geranylgeranyl moieties. After prenylation, the Rab protein remains in complex with REP and is delivered to the target membrane by the latter. In this work, we show that RabGGTase can form a stable complex with Rab7-REP in the absence of its lipid substrate geranylgeranyl pyrophosphate. In order to characterize this interaction, we developed three fluorescence assays reporting on the interaction of RabGGTase with the Rab7-REP complex. For this interaction we determined a Kd value of about 120 nM. Association of RabGGTase with the Rab7-REP complex occurs with a rate constant of approximately 108 M-1 x s-1. We demonstrate that the state of the nucleotide bound to Rab7 does not influence the affinity of RabGGTase for the Rab7-REP-1 complex. Finally, we address the issue of substrate specificity of RabGGTase. Titration experiments demonstrate that, in contrast with farnesyl transferase, RabGGTase does not recognize a defined C-terminal sequence motif. Experiments using Rab7 mutants in which the last 16 amino acids were either mutated or truncated revealed that the distal part of the C-terminus makes only a limited contribution to the binding affinity between RabGGTase and the Rab7-REP-1 complex. This demonstrates the functional dissimilarity between RabGGTase and geranylgeranyl transferase I and farnesyl transferase, which interact specifically with the C-terminus of their substrates. Based on these experiments, we propose that RabGGTase recognizes the overall structure arising from the association of Rab and REP and then 'scans' the flexible C-terminus to position the proximal cysteines into the active site.  相似文献   

19.
Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport. Dynactin can bind to vesicles and liposomes containing acidic phospholipids, but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion. In particular, Rab27a tethers melanosomes to the actin cytoskeleton. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule-dependent transport pathways through the Golgi and from endosomes to the Golgi. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes.  相似文献   

20.
《FEBS letters》1993,330(3):323-328
Rab proteins are small GTPases highly related to the yeast Ypti and Sec4 proteins involved in secretion. The Rab proteins were found associated with membranes of different compartments along the secretory and endocytic pathways. They share distinct C-terminal cysteine motifs required for membrane association. Unlike the other Rab proteins, Rab8, Rab11 and Rab13 terminate with a C-terminal CaaX motif similar to those of Ras/Rho proteins. This report demonstrates that Rab8 and Rab13 proteins are isoprenylated in vivo and geranylgeranylated in vitro. Rab11 associates in vitro geranylgeranylpyrophosphate and farnesylpyrophosphate. Our study shows that the CaaX motif is required for isoprenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号