首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marburg virus (MARV) matrix protein VP40 plays a key role in virus assembly, recruiting nucleocapsids and the surface protein GP to filopodia, the sites of viral budding. In addition, VP40 is the only MARV protein able to induce the release of filamentous virus-like particles (VLPs) indicating its function in MARV budding. Here, we demonstrated that VP40 is phosphorylated and that tyrosine residues at positions 7, 10, 13 and 19 represent major phosphorylation acceptor sites. Mutagenesis of these tyrosine residues resulted in expression of a non-phosphorylatable form of VP40 (VP40(mut) ). VP40(mut) was able to bind to cellular membranes, produce filamentous VLPs, and inhibit interferon-induced gene expression similarly to wild-type VP40. However, VP40(mut) was specifically impaired in its ability to recruit nucleocapsid structures into filopodia, and released infectious VLPs (iVLPs) had low infectivity. These results indicated that tyrosine phosphorylation of VP40 is important for triggering the recruitment of nucleocapsids to the viral envelope.  相似文献   

2.
The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and endodomain. To this aim, we used the virus-like particle (VLP) system that we developed earlier for the mouse hepatitis virus strain A59 (MHV-A59) and which we describe now also for the unrelated coronavirus feline infectious peritonitis virus (FIPV; strain 79-1146). Two chimeric MHV-FIPV S proteins were constructed, consisting of the ectodomain of the one virus and the transmembrane and endodomain of the other. These proteins were tested for their incorporation into VLPs of either species. They were found to assemble only into viral particles of the species from which their carboxy-terminal domain originated. Thus, the 64-terminal-residue sequence suffices to draw the 1308 (MHV)- or 1433 (FIPV)-amino-acid-long mature S protein into VLPs. Both chimeric S proteins appeared to cause cell fusion when expressed individually, suggesting that they were biologically fully active. This was indeed confirmed by incorporating one of the proteins into virions which thereby acquired a new host cell tropism, as will be reported elsewhere.  相似文献   

3.
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality.Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells,followed by fusion of virus-cell membrane also mediated by GP.Using an human immunodeficiency virus (HIV)-based pseudotyping system,the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions.We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry.An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry.It was found that R64 and K95 are involved in receptor binding.In contrast,some residues such as I170 are important for viral entry,but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data,suggesting that these residues are involved in post-binding steps of viral entry.Furthermore,our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.  相似文献   

4.
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.  相似文献   

5.
Ebola virus (EboV) and Marburg virus (MarV) (filoviruses) are the causative agents of severe hemorrhagic fever. Infection begins with uptake of particles into cellular endosomes, where the viral envelope glycoprotein (GP) catalyzes fusion between the viral and host cell membranes. This fusion event is thought to involve conformational rearrangements of the transmembrane subunit (GP2) of the envelope spike that ultimately result in formation of a six-helix bundle by the N- and C-terminal heptad repeat (NHR and CHR, respectively) regions of GP2. Infection by other viruses employing similar viral entry mechanisms (such as HIV-1 and severe acute respiratory syndrome coronavirus) can be inhibited with synthetic peptides corresponding to the native CHR sequence ("C-peptides"). However, previously reported EboV C-peptides have shown weak or insignificant antiviral activity. To determine whether the activity of a C-peptide could be improved by increasing its intracellular concentration, we prepared an EboV C-peptide conjugated to the arginine-rich sequence from HIV-1 Tat, which is known to accumulate in endosomes. We found that this peptide specifically inhibited viral entry mediated by filovirus GP proteins and infection by authentic filoviruses. We determined that antiviral activity was dependent on both the Tat sequence and the native EboV CHR sequence. Mechanistic studies suggested that the peptide acts by blocking a membrane fusion intermediate.  相似文献   

6.
The envelope glycoprotein (GP) of Marburg virus (MARV) and Ebola virus (EBOV) is responsible for virus entry into host cells and is known as the only target of neutralizing antibodies. While knowledge about EBOV-neutralizing antibodies and the mechanism for the neutralization of infectivity is being accumulated gradually, little is known about antibodies that can efficiently regulate MARV infectivity. Here we show that MARV GP-specific monoclonal antibodies AGP127-8 (IgG1) and MGP72-17 (IgM), which do not inhibit the GP-mediated entry of MARV into host cells, drastically reduced the budding and release of progeny viruses from infected cells. These antibodies similarly inhibited the formation of virus-like particles (VLPs) consisting of GP, the viral matrix protein, and nucleoprotein, whereas the Fab fragment of AGP127-8 showed no inhibitory effect. Morphological analyses revealed that filamentous VLPs were bunched on the surface of VLP-producing cells cultured in the presence of the antibodies. These results demonstrate a novel mechanism of the antibody-mediated inhibition of MARV budding, in which antibodies arrest unformed virus particles on the cell surface. Our data lead to the idea that such antibodies, like classical neutralizing antibodies, contribute to protective immunity against MARV and that the “classical” neutralizing activity is not the only indicator of a protective antibody that may be available for prophylactic and therapeutic use.  相似文献   

7.
Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV requires fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein, GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔG(unf,H(2)O), of 33.4 ± 2.5 kcal/mol and melting temperature, T(m), of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH, with higher stability under lower-pH conditions (T(m) values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. On the basis of these results, we hypothesize that the pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism for controlling conformational preferences such that the six-helix bundle "postfusion" state is preferred under conditions of appropriately matured endosomes.  相似文献   

8.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly.  相似文献   

9.
Fusion of the viral and host cell membranes is a necessary first step for infection by enveloped viruses and is mediated by the envelope glycoprotein. The transmembrane subunits from the structurally defined “class I” glycoproteins adopt an α-helical “trimer-of-hairpins” conformation during the fusion pathway. Here, we present our studies on the envelope glycoprotein transmembrane subunit, GP2, of the CAS virus (CASV). CASV was recently identified from annulated tree boas (Corallus annulatus) with inclusion body disease and is implicated in the disease etiology. We have generated and characterized two protein constructs consisting of the predicted CASV GP2 core domain. The crystal structure of the CASV GP2 post-fusion conformation indicates a trimeric α-helical bundle that is highly similar to those of Ebola virus and Marburg virus GP2 despite CASV genome homology to arenaviruses. Denaturation studies demonstrate that the stability of CASV GP2 is pH dependent with higher stability at lower pH; we propose that this behavior is due to a network of interactions among acidic residues that would destabilize the α-helical bundle under conditions where the side chains are deprotonated. The pH-dependent stability of the post-fusion structure has been observed in Ebola virus and Marburg virus GP2, as well as other viruses that enter via the endosome. Infection experiments with CASV and the related Golden Gate virus support a mechanism of entry that requires endosomal acidification. Our results suggest that, despite being primarily arenavirus like, the transmembrane subunit of CASV is extremely similar to the filoviruses.  相似文献   

10.
The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61–70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle.  相似文献   

11.
cDNAs encoding the G glycoprotein of respiratory syncytial virus and the hemagglutinin-neuraminidase (HN) glycoprotein of parainfluenza virus type 3 were modified by site-specific mutagenesis and restriction fragment replacement to encode chimeric proteins consisting of the cytoplasmic and transmembrane domains of one protein fused to the ectodomain of the other. In the case of the HN ectodomain attached to the G transmembrane and cytoplasmic domains, cell surface expression of the chimera was reduced. Otherwise, the presence of the heterologous transmembrane and cytoplasmic domains had little effect on the processing of the HN or G ectodomain, as assayed by the acquisition of N-linked and O-linked carbohydrates, transport to the cell surface and, in the case of HN, folding, oligomerization, and hemadsorption activity. These results showed that the synthesis and processing of each ectodomain did not require the homologous transmembrane and cytoplasmic domains. In particular, O glycosylation of the G protein was specified fully by its ectodomain, even though this domain is highly divergent among the respiratory syncytial virus antigenic subgroups. In addition, whereas the cytoplasmic and transmembrane domains of the G protein were relatively highly conserved, they were nonetheless fully replaceable without significantly affecting processing.  相似文献   

12.
The major protein constituents of the filoviral envelope are the matrix protein VP40 and the surface transmembrane protein GP. While VP40 is recruited to the sites of budding via the late retrograde endosomal transport route, GP is suggested to be transported via the classical secretory pathway involving the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network until it reaches the plasma membrane where most filoviral budding takes place. Since both transport routes target the plasma membrane, it was thought that GP and VP40 join there to form the viral envelope. However, it was recently shown that, upon coexpression of both proteins, GP is partially recruited into peripheral VP40-enriched multivesicular bodies, which contained markers of the late endosome. Accumulation of GP and VP40 in this compartment was presumed to play an important role in the formation of the filoviral envelope. Using a domain-swapping approach, we were able to show that the transmembrane domain of GP was essential and sufficient for (i) partial recruitment of chimeric glycoproteins into VP40-enriched multivesicular bodies and (ii) incorporation into virus-like particles (VLPs) that were released upon expression of VP40. Only those chimeric glycoproteins which were targeted to VP40-enriched endosomal multivesicular bodies were subsequently recruited into VLPs. These data show that the transmembrane domain of GP is critical for the mixing of VP40 and GP in multivesicular bodies and incorporation of GP into the viral envelope. Results further suggest that trapping of GP in the VP40-enriched late endosomal compartment is important for the formation of the viral envelope.  相似文献   

13.
Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC(50)) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC(50)s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 microM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.  相似文献   

14.
Two transmembrane glycoproteins form spikes on the surface of Sendai virus, a member of the Respirovirus genus of the Paramyxovirinae subfamily of the Paramyxoviridae family: the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. HN, in contrast to F, is dispensable for viral particle production, as normal amounts of particles can be produced with highly reduced levels of HN. This HN reduction can result from mutation of an SYWST motif in its cytoplasmic tail to AFYKD. HNAFYKD accumulates at the infected cell surface but does not get incorporated into particles. In this work, we derived experimental tools to rescue HNAFYKD incorporation. We found that coexpression of a truncated HN harboring the wild-type cytoplasmic tail, the transmembrane domain, and at most 80 amino acids of the ectodomain was sufficient to complement defective HNAFYKD incorporation into particles. This relied on formation of disulfide-bound heterodimers carried out by the two cysteines present in the HN 80-amino-acid (aa) ectodomain. Finally, the replacement of the measles virus H cytoplasmic and transmembrane domains with the corresponding HN domains promoted measles virus H incorporation in Sendai virus particles.  相似文献   

15.
Ebola virus infection is initiated by interactions between the viral glycoprotein GP1 and its cognate receptor(s), but little is known about the structure and function of GP1 in viral entry, partly due to the concern about safety when working with the live Ebola virus and the difficulty of manipulating the RNA genome of Ebola virus. In this study, we have used a human immunodeficiency virus-based pseudotyped virus as a surrogate system to dissect the role of Ebola virus GP1 in viral entry. Analysis of more than 100 deletion and amino acid substitution mutants of GP1 with respect to protein expression, processing, viral incorporation, and viral entry has allowed us to map the region of GP1 responsible for viral entry to the N-terminal 150 residues. Furthermore, six amino acids in this region have been identified as critical residues for early events in Ebola virus entry, and among these, three are clustered and are implicated as part of a potential receptor-binding pocket. In addition, substitutions of some 30 residues in GP1 are shown to adversely affect GP1 expression, processing, and viral incorporation, suggesting that these residues are involved in the proper folding and/or overall conformation of GP. Sequence comparison of the GP1 proteins suggests that the majority of the critical residues for GP folding and viral entry identified in Ebola virus GP1 are conserved in Marburg virus. These results provide information for elucidating the structural and functional roles of the filoviral glycoproteins and for developing potential therapeutics to block viral entry.  相似文献   

16.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

17.
Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Fusion is mediated by the viral fusion (F) protein, and it undergoes large irreversible conformational changes to cause membrane merger. The C terminus of PIV5 F contains a membrane-proximal 7-residue external region (MPER), followed by the transmembrane (TM) domain and a 20-residue cytoplasmic tail. To study the sequence requirements of the F protein C terminus for fusion, we constructed chimeras containing the ectodomain of parainfluenza virus 5 F (PIV5 F) and either the MPER, the TM domain, or the cytoplasmic tail of the F proteins of the paramyxoviruses measles virus, mumps virus, Newcastle disease virus, human parainfluenza virus 3, and Nipah virus. The chimeras were expressed, and their ability to cause cell fusion was analyzed. The chimeric proteins were variably expressed at the cell surface. We found that chimeras containing the ectodomain of PIV5 F with the C terminus of other paramyxoviruses were unable to cause cell fusion. Fusion could be restored by decreasing the activation energy of refolding through introduction of a destabilizing mutation (S443P). Replacing individual regions, singly or doubly, in the chimeras with native PIV5 F sequences restored fusion to various degrees, but it did not have an additive effect in restoring activity. Thus, the F protein C terminus may be a specific structure that only functions with its cognate ectodomain. Alanine scanning mutagenesis of MPER indicates that it has a regulatory role in fusion since both hyperfusogenic and hypofusogenic mutations were found.  相似文献   

18.
A reverse genetics approach which allows the generation of infectious defective rabies virus (RV) particles entirely from plasmid-encoded genomes and proteins (K.-K. Conzelmann and M. Schnell, J. Virol. 68:713-719, 1994) was used to investigate the ability of a heterologous lyssavirus glycoprotein (G) and chimeric G constructs to function in the formation of infectious RV-like particles. Virions containing a chloramphenicol acetyltransferase (CAT) reporter gene (SDI-CAT) were generated in cells simultaneously expressing the genomic RNA analog, the RV N, P, M, and L proteins, and engineered G constructs from transfected plasmids. The infectivity of particles was determined by a CAT assay after passage to helper virus-infected cells. The heterologous G protein from Eth-16 virus (Mokola virus, lyssavirus serotype 3) as well as a construct in which the ectodomain of RV G was fused to the cytoplasmic and transmembrane domains of the Eth-16 virus G rescued infectious SDI-CAT particles. In contrast, a chimeric protein composed of the amino-terminal half of the Eth-16 virus G and the carboxy-terminal half of RV G failed to produce infectious particles. Site-directed mutagenesis was used to convert the antigenic site III of RV G to the corresponding sequence of Eth-16 G. This chimeric protein rescued infectious SDI-CAT particles as efficiently as RV G. Virions containing the chimeric protein were specifically neutralized by an anti-Eth-16 virus serum and escaped neutralization by a monoclonal antibody directed against RV antigenic site III. The results show that entire structural domains as well as short surface epitopes of lyssavirus G proteins may be exchanged without affecting the structure required to mediate infection of cells.  相似文献   

19.
Intercellular adhesion molecule-1 (CD54), a cell adhesion molecule and the receptor for the major group of rhinoviruses, is a class 1 membrane protein with five Ig-like domains in its extracellular region, a transmembrane domain, and a short cytoplasmic domain. The amino-terminal domains (D1 and D2) are sufficient for virus binding and the first is most important (1). We have investigated whether other extracellular domains, transmembrane or cytoplasmic domains are required for virus entry as determined by postinfection virion protein biosynthesis. We demonstrate that cytoplasmic, transmembrane, and Ig-like domains 3, 4, and 5 are not essential for rhinovirus entry into transfected COS cells. The efficiency of rhinovirus infection directly correlates with the efficiency of rhinovirus binding and a form of intercellular adhesion molecule-1 that is glycophosphatidyl-inositol anchored, and thus does not extend into the inner leaflet of the membrane bilayer or the cytoplasm efficiently supports virus entry.  相似文献   

20.
Enveloped viruses enter cells via a membrane fusion reaction driven by conformational changes of specific viral envelope proteins. We report here the structure of the ectodomain of the tick-borne encephalitis virus envelope glycoprotein, E, a prototypical class II fusion protein, in its trimeric low-pH-induced conformation. We show that, in the conformational transition, the three domains of the neutral-pH form are maintained but their relative orientation is altered. Similar to the postfusion class I proteins, the subunits rearrange such that the fusion peptide loops cluster at one end of an elongated molecule and the C-terminal segments, connecting to the viral transmembrane region, run along the sides of the trimer pointing toward the fusion peptide loops. Comparison with the low-pH-induced form of the alphavirus class II fusion protein reveals striking differences at the end of the molecule bearing the fusion peptides, suggesting an important conformational effect of the missing membrane connecting segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号