首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An abnormal isoform of the prion protein, associated with transmissible spongiform encephalopathies, retains infectivity even after undergoing routine sterilization processes. We found that a formulation of iron ions combined with hydrogen peroxide effectively reduced infectivity and the level of abnormal isoforms of the prion protein in scrapie-infected brain homogenates. Therefore, the Fenton reaction has potential for prion decontamination.  相似文献   

2.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders affecting humans and animals. At present, it is not possible to recognize individuals incubating the disease before the clinical symptoms appear. We investigated the effectiveness of the "Protein Misfolding Cyclic Amplification" (PMCA) technology to detect the protease-resistance disease-associated prion protein (PrP(res)) in pre-symptomatic stages. PMCA allowed detection of PrP(res) in the brain of pre-symptomatic hamsters, enabling a clear identification of infected animals as early as two weeks after inoculation. Furthermore, PMCA was able to amplify minute quantities of PrP(res) from a variety of experimental and natural TSEs. Finally, PMCA allowed the demonstration of PrP(res) in an experimentally infected cow 32 month post-inoculation, that did not show clinical signs and was negative by standard Western blot analysis. Our findings indicate that PMCA may be useful for the development of an ultra-sensitive diagnostic test to minimize the risk of further propagation of TSEs.  相似文献   

3.
Prions are the unconventional infectious agents responsible for transmissible spongiform encephalopathies, which appear to be composed mainly or exclusively of the misfolded prion protein (PrPSc). Prion replication involves the conversion of the normal prion protein (PrPC) into the misfolded isoform, catalyzed by tiny quantities of PrPSc present in the infectious material. We have recently developed the protein misfolding cyclic amplification (PMCA) technology to sustain the autocatalytic replication of infectious prions in vitro. Here we show that PMCA enables the specific and reproducible amplification of exceptionally minute quantities of PrPSc. Indeed, after seven rounds of PMCA, we were able to generate large amounts of PrPSc starting from a 1x10(-12) dilution of scrapie hamster brain, which contains the equivalent of approximately 26 molecules of protein monomers. According to recent data, this quantity is similar to the minimum number of molecules present in a single particle of infectious PrPSc, indicating that PMCA may enable detection of as little as one oligomeric PrPSc infectious particle. Interestingly, the in vitro generated PrPSc was infectious when injected in wild-type hamsters, producing a disease identical to the one generated by inoculation of the brain infectious material. The unprecedented amplification efficiency of PMCA leads to a several billion-fold increase of sensitivity for PrPSc detection as compared with standard tests used to screen prion-infected cattle and at least 4000 times more sensitivity than the animal bioassay. Therefore, PMCA offers great promise for the development of highly sensitive, specific, and early diagnosis of transmissible spongiform encephalopathy and to further understand the molecular basis of prion propagation.  相似文献   

4.
The in vitro amplification of prions by serial protein misfolding cyclic amplification has been shown to detect PrPSc to levels at least as sensitive as rodent bioassay but in a fraction of the time. Bovine spongiform encephalopathy is a zoonotic prion disease in cattle and has been shown to occur in 3 distinct forms, classical BSE (C-BSE) and 2 atypical BSE forms (L-BSE and H-BSE). Atypical forms are usually detected in asymptomatic, older cattle and are suggested to be spontaneous forms of the disease. Here, we show the development of a serial protein misfolding cyclic amplification method for the detection of H-BSE. The assay could detect PrPSc from 3 distinct experimental isolates of H-BSE, could detect PrPSc in as little as 1×10?12 g of brain material and was highly specific. Additionally, the product of serial protein misfolding cyclic amplification at all dilutions of seed analyzed could be readily distinguished from L-BSE, which did not amplify, and C-BSE, which had PrPSc with distinct protease K-resistance and protease K-resistant PrPSc molecular weights.  相似文献   

5.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

6.
Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.  相似文献   

7.
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.  相似文献   

8.
A key feature of prion encephalopathies is the accumulation of a misfolded form of the host glycoprotein PrP. Cell-free and cell culture studies have shown that the efficiency of conversion of PrP into the disease-associated form is influenced by its amino acid sequence and also by its carbohydrate moiety. Here, we characterize four novel glycoform-dependent monoclonal antibodies raised against prokaryotic recombinant sheep PrP. We demonstrate that these antibodies discriminate the PrP monoglycosylated species, since two of them recognize molecules that have the first Asn glycosylation site occupied (mono1) while the other two recognize molecules glycosylated at the second site (mono2). Remarkably, the recognition of PrP by the anti-mono2 antibodies was strongly influenced by the amino acid present at position 171, i.e., either Gln or Arg. This polymorphism is known to be the main determinant of susceptibility and resistance to scrapie in sheep. Altogether, our findings lead us to propose that each glycan chain controls the accessibility of PrP determinants located close upstream from their attachment site. The monoglycoform-assigned and the allotype-restricted antibodies described here, the first to date, should provide further opportunities to investigate the involvement of each glycan chain in PrP conversion in relation to prion strain diversity and the basis of the resistance conferred by the Arg-171 amino acid.  相似文献   

9.
The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β‐state oligomers. Herein, we demonstrate that β‐state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full‐length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP‐induced neurotoxicity. We have characterized protein misfolding cyclic amplification‐induced monomer‐to‐oligomer conversion of PrP from three species using western blotting, circular dichroism, size‐exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β‐oligomers are toxic to primary mouse cortical neurons independent of the presence of PrPC in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer‐induced apoptosis via regulation of Bcl‐2, Bax, and caspase‐3 in both wild‐type and PrP?/? cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain.

  相似文献   


10.
The microsecond folding and unfolding kinetics of ovine prion proteins (ovPrP) were measured under various solution conditions. A fragment comprising residues 94–233 of the full-length ovPrP was studied for four variants with differing susceptibilities to classical scrapie in sheep. The observed biexponential unfolding kinetics of ovPrP provides evidence for an intermediate species. However, in contrast to previous results for human PrP, there is no evidence for an intermediate under refolding conditions. Global analysis of the kinetic data, based on a sequential three-state mechanism, quantitatively accounts for all folding and unfolding data as a function of denaturant concentration. The simulations predict that an intermediate accumulates under both folding and unfolding conditions, but is observable only in unfolding experiments because the intermediate is optically indistinguishable from the native state. The relative population of intermediates in two ovPrP variants, both transiently and under destabilizing equilibrium conditions, correlates with their propensities for classical scrapie. The variant susceptible to classical scrapie has a larger population of the intermediate state than the resistant variant. Thus, the susceptible variant should be favored to undergo the PrPC to PrPSc conversion and oligomerization.  相似文献   

11.
A point mutation in Prnp that converts tyrosine (Y) at position 145 into a stop codon leading to a truncated prion molecule as found in an inherited transmissible spongiform encephalopathy (TSE), Gertsmann-Sträussler-Scheincker syndrome, suggests that the N-terminus of the molecule (spanning amino acids 23–144) likely plays a critical role in prion misfolding as well as in protein-protein interactions. We hypothesized that Y145Stop molecule represents an unstable part of the prion protein that is prone to spontaneous misfolding. Utilizing protein misfolding cyclic amplification (PMCA) we show that the recombinant polypeptide corresponding to the Y145Stop of sheep and deer PRNP can be in vitro converted to PK-resistant PrPSc in presence or absence of preexisting prions. In contrast, recombinant protein full-length PrPC did not show a propensity for spontaneous conformational conversion to protease resistant isoforms. Further, we show that seeded or spontaneously misfolded Y145Stop molecules can efficiently convert purified mammalian PrPC into protease resistant isoforms. These results establish that the N-terminus of PrPC molecule corresponding to residues 23–144 plays a role in seeding and misfolding of mammalian prions.Key words: prion protein, prions, recombinant prion protein, Y145Stop, protein misfolding cyclic amplification  相似文献   

12.
《朊病毒》2013,7(1):81-88
A point mutation in Prnp that converts tyrosine (Y) at position 145 into a stop codon leading to a truncated prion molecule as found in an inherited transmissible spongiform encephalopathy (TSE), Gertsmann-Sträussler-Scheincker syndrome, suggests that the N-terminus of the molecule (spanning amino acids 23–144) likely plays a critical role in prion misfolding as well as in protein-protein interactions. We hypothesized that Y145Stop molecule represents an unstable part of the prion protein that is prone to spontaneous misfolding. Utilizing protein misfolding cyclic amplification (PMCA) we show that the recombinant polypeptide corresponding to the Y145Stop of sheep and deer PRNP can be in vitro converted to PK-resistant PrPSc in presence or absence of preexisting prions. In contrast, recombinant protein full-length PrPC did not show a propensity for spontaneous conformational conversion to protease resistant isoforms. Further, we show that seeded or spontaneously misfolded Y145Stop molecules can efficiently convert purified mammalian PrPC into protease resistant isoforms. These results establish that the N-terminus of PrPC molecule corresponding to residues 23–144 plays a role in seeding and misfolding of mammalian prions.  相似文献   

13.

Background  

Since 1954, there have been in excess of 800 cases of rabies as a result of European Bat Lyssaviruses types 1 and 2 (EBLV-1, EBLV-2) infection, mainly in Serotine and Myotis bats respectively. These viruses have rarely been reported to infect humans and terrestrial mammals, as the only exceptions are sheep in Denmark, a stone marten in Germany and a cat in France. The purpose of this study was to investigate the susceptibility of foxes to EBLVs using silver foxes (Vulpes vulpes) as a model.  相似文献   

14.
The susceptibility of sheep to classical scrapie and bovine spongiform encephalopathy (BSE) is mainly influenced by prion protein (PrP) polymorphisms A136V, R154H, and Q171R, with the ARR allele associated with significantly decreased susceptibility. Here we report the protective effect of the amino acid substitution M137T, I142K, or N176K on the ARQ allele in sheep experimentally challenged with either scrapie or BSE. Such observations suggest the existence of additional PrP alleles that significantly decrease the susceptibility of sheep to transmissible spongiform encephalopathies, which may have important implications for disease eradication strategies.  相似文献   

15.
Prions, infectious agents causing TSEs, are composed primarily of the pathogenic form (PrP(Sc)) of the PrP(C). The susceptibility of sheep to scrapie is determined by polymorphisms in the coding region of the PRNP, mainly at codons 136, 154, and 171. The efficiency of in vitro amplification of sheep PrP(Sc) seems to be linked also to the PrP genotype. PrP(Sc) derived from sheep with V(136)R(154)Q(171)-associated genotypes can be amplified efficiently by PMCA in the presence of additional polyanion such as poly A, but there are no reports that cite ultrasensitive detection of PrP(Sc) derived from sheep of other PrP genotypes. We report here that sheep PrP(Sc) derived from ARQ and AHQ homozygotes was amplified efficiently by serial PMCA using mouse brain homogenate as PrP(C) substrate. ARQ/ARQ PrP(Sc) was detected in infected brain homogenates diluted up to 10(-10) after five rounds of amplification, and AHQ/AHQ PrP(Sc) was detected in samples diluted up to 10(-8) after four rounds of amplification. On the other hand, amplification of PrP(Sc) from VRQ/ARQ sheep seemed to be less efficient under the experimental conditions used. The interspecies PMCA developed in this study may be useful in the detailed analysis of PrP(Sc) distribution in classical scrapie-infected ARQ and AHQ homozygote sheep.  相似文献   

16.
This study investigated whether the transmission of naturally occurring scrapie in sheep can be prevented using embryo transfer. Embryos were collected from 38 donor ewes in a Suffolk sheep flock with a high incidence of naturally occurring scrapie, treated with a sanitary procedure (embryo washing) recommended by the International Embryo Transfer Society and then transferred to 58 scrapie-free recipient ewes. Ninety-four offspring were produced. None of the offspring or the recipient ewes developed scrapie. Furthermore, offspring derived from embryos collected from donor ewes bred to the immunohistochemically positive ram did not develop scrapie. We conclude that scrapie was not transmitted to offspring via the embryo nor was the infective agent transmitted to recipient ewes during embryo transfer procedures.  相似文献   

17.
In this study, the efficacy of disinfectants in reducing the partially protease-resistant isoform of prion protein was evaluated by a multi-round protein misfolding cyclic amplification (PMCA) technique. Hamster brains infected with scrapie-derived strain 263K were homogenized, treated under inactivating or mock conditions, and subjected to multi-round PMCA. Four sets of serial 10-fold dilutions of mock-treated samples were analyzed. Although considerable variability was observed in the signal patterns, between the second and sixth rounds the number of the PMCA round correlated in a linear fashion with the mean dilution factor of mock-treated, infected brains, corresponding to a log reduction factor (LRF) of 3.8-7.3 log. No signals were observed in the PMCA products amplified from normal hamster brain homogenates. The mean numbers of rounds at the first appearance of the signal for 1 M and 2 M NaOH-treated samples were 4.33 and 4, respectively. Using the linear regression line as the titration curve, the LRFs of these disinfectants were found to be 6.1 and 5.8 log, respectively; these values were not significantly different. The mean number of rounds for the alkaline cleaner and sodium dodecyl sulfate were 9 and 10.33, respectively, and were outside the range of both the linear regression line and evaluation limit. The disinfectants were considered very effective because their LRFs were ≥7.3 log. These estimations were concordant with previous bioassay-based reports. Thus, the evaluation limit seems to be valuable in some applications of multi-round PMCA, such as disinfectant assessment and process validation.  相似文献   

18.
Breeding sheep populations for scrapie resistance could result in a loss of genetic variability. In this study, the effect on genetic variability of selection for increasing the ARR allele frequency was estimated in the Latxa breed. Two sources of information were used, pedigree and genetic polymorphisms (fifteen microsatellites). The results based on the genealogical information were conditioned by a low pedigree completeness level that revealed the interest of also using the information provided by the molecular markers. The overall results suggest that no great negative effect on genetic variability can be expected in the short time in the population analysed by selection of only ARR/ARR males. The estimated average relationship of ARR/ARR males with reproductive females was similar to that of all available males whatever its genotype: 0.010 vs. 0.012 for a genealogical relationship and 0.257 vs. 0.296 for molecular coancestry, respectively. However, selection of only ARR/ARR males implied important losses in founder animals (87 percent) and low frequency alleles (30 percent) in the ram population. The evaluation of mild selection strategies against scrapie susceptibility based on the use of some ARR heterozygous males was difficult because the genetic relationships estimated among animals differed when pedigree or molecular information was used, and the use of more molecular markers should be evaluated.  相似文献   

19.
Prion replication is believed to consist of two components, a growth or elongation of infectious isoform of the prion protein (PrP(Sc)) particles and their fragmentation, a process that provides new replication centers. The current study introduced an experimental approach that employs Protein Misfolding Cyclic Amplification with beads (PMCAb) and relies on a series of kinetic experiments for assessing elongation rates of PrP(Sc) particles. Four prion strains including two strains with short incubation times to disease (263K and Hyper) and two strains with very long incubation times (SSLOW and LOTSS) were tested. The elongation rate of brain-derived PrP(Sc) was found to be strain-specific. Strains with short incubation times had higher rates than strains with long incubation times. Surprisingly, the strain-specific elongation rates increased substantially for all four strains after they were subjected to six rounds of serial PMCAb. In parallel to an increase in elongation rates, the percentages of diglycosylated PrP glycoforms increased in PMCAb-derived PrP(Sc) comparing to those of brain-derived PrP(Sc). These results suggest that PMCAb selects the same molecular features regardless of strain initial characteristics and that convergent evolution of PrP(Sc) properties occurred during in vitro amplification. These results are consistent with the hypothesis that each prion strain is comprised of a variety of conformers or 'quasi-species' and that change in the prion replication environment gives selective advantage to those conformers that replicate most effectively under specific environment.  相似文献   

20.
The susceptibility of sheep to scrapie is known to involve, as a major determinant, the nature of the prion protein (PrP) allele, with the VRQ allele conferring the highest susceptibility to the disease. Transgenic mice expressing in their brains three different ovine PrP(VRQ)-encoding transgenes under an endogenous PrP-deficient genetic background were established. Nine transgenic (tgOv) lines were selected and challenged with two scrapie field isolates derived from VRQ-homozygous affected sheep. All inoculated mice developed neurological signs associated with a transmissible spongiform encephalopathy (TSE) disease and accumulated a protease-resistant form of PrP (PrPres) in their brains. The incubation duration appeared to be inversely related to the PrP steady-state level in the brain, irrespective of the transgene construct. The survival time for animals from the line expressing the highest level of PrP was reduced by at least 1 year compared to those of two groups of conventional mice. With one isolate, the duration of incubation was as short as 2 months, which is comparable to that observed for the rodent TSE models with the briefest survival times. No survival time reduction was observed upon subpassaging of either isolate, suggesting no need for adaptation of the agent to its new host. Overexpression of the transgene was found not to be required for transmission to be accelerated compared to that observed with wild-type mice. Conversely, transgenic mice overexpressing murine PrP were found to be less susceptible than tgOv lines expressing ovine PrP at physiological levels. These data argue that ovine PrP(VRQ) provided a better substrate for sheep prion replication than did mouse PrP. Altogether, these tgOv mice could be an improved model for experimental studies on natural sheep scrapie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号