首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study, we tested the role of excised base on MPG enzymatic activity. After the reaction, MPG produced two products: free damaged base and AP-site containing DNA. Our results showed that MPG excises 1,N6-ethenoadenine (?A) from ?A-containing oligonucleotide (?A-DNA) at a similar or slightly increased efficiency than it does hypoxanthine (Hx) from Hx-containing oligonucleotide (Hx-DNA) under similar conditions. Real-time binding experiments by surface plasmon resonance (SPR) spectroscopy suggested that both the substrate DNAs have a similar equilibrium binding constant (KD) towards MPG, but under single-turnover (STO) condition there is apparently no effect on catalytic chemistry; however, the turnover of the enzyme under multiple-turnover (MTO) condition is higher for ?A-DNA than it is for Hx-DNA. Real-time binding experiments by SPR spectroscopy further showed that the dissociation of MPG from its product, AP-site containing DNA, is faster than the overall turnover of either Hx- or ?A-DNA reaction. We thereby conclude that the excised base plays a critical role in product inhibition and, hence, is essential for MPG glycosylase activity. Thus, the results provide the first evidence that the excised base rather than AP-site could be rate-limiting for DNA-glycosylase reactions.  相似文献   

2.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. MPG activity and other DNA glycosylases do not have an absolute requirement for a cofactor. In contrast, all downstream activities of major base excision repair proteins, such as apurinic/apyrimidinic endonuclease, DNA polymerase beta, and ligases, require Mg(2+). Here we have demonstrated that Mg(2+) can be significantly inhibitory toward MPG activity depending on its concentration but independent of substrate type. The pre-steady-state kinetics suggests that Mg(2+) at high but physiologic concentrations decreases the amount of active enzyme concentrations. Steady-state inhibition kinetics showed that Mg(2+) affected K(m), but not V(max), and the inhibition could be reversed by EDTA but not by DNA. At low concentration, Mg(2+) stimulated the enzyme activity only with hypoxanthine but not ethenoadenine. Real-time binding experiments using surface plasmon resonance spectroscopy showed that the pronounced inhibition of activity was due to inhibition in substrate binding. Nonetheless, the glycosidic bond cleavage step was not affected. These results altogether suggest that Mg(2+) inhibits MPG activity by abrogating substrate binding. Because Mg(2+) is an absolute requirement for the downstream activities of the major base excision repair enzymes, it may act as a regulator for the base excision repair pathway for efficient and balanced repair of damaged bases, which are often less toxic and/or mutagenic than their subsequent repair product intermediates.  相似文献   

3.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis.  相似文献   

4.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, induced by alkylating chemotherapeutics, and deaminated and lipid peroxidation-induced purine adducts. We have generated monoclonal antibodies (moAbs) against human MPG. Twelve independent hybridoma clones were characterized, which, except 520-16A, are identical based on epitope exclusion assay. Four moAbs, including 520-2A, 520-3A, 520-16A, and 520-26A, have high affinity (K(D) approximately 0.3-1.6nM), and their subtypes were IgG(2a), IgG(1), IgG(2a), and IgG(2b), respectively. moAb 520-3A recognizes the sequence (52)AQAPCPRERCLGPP(66)T, an epitope exclusively present in the N-terminal extension of human MPG. We found that moAb 520-3A significantly inhibited MPG's enzymatic activity towards different substrates, such as hypoxanthine, 1,N(6)ethenoadenine and methylated bases, which represent different classes of DNA damage, however, with different efficiencies. Real-time binding experiments using surface plasmon resonance (SPR) spectroscopy showed that the pronounced inhibition of activity was not in the substrate-binding step. Single turnover kinetics (STO) revealed that the inhibition was at the catalytic step. Since we found that this antibody has an epitope in the N-terminal tail, the latter appears to have an important role in substrate discrimination, however, with a differential effect on different substrates.  相似文献   

5.
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.  相似文献   

6.
Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N6-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N6-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence.  相似文献   

7.
Nucleoside-diphosphate kinase of Mycobacterium tuberculosis (mNdK) is a secretory protein, but the rationale behind secreting an enzyme involved in the maintenance of cellular pool of nucleoside triphosphates is not clearly understood. To elucidate the biological significance of mNdK secretion, we expressed mNdK fused to green fluorescent protein in HeLa and COS-1 cells. Interestingly, mNdK was detected in the nuclei of HeLa and COS-1 cells. Incubation of mNdK with nuclei isolated from HeLa and COS-1 cells led to in situ damage of chromosomal DNA. Surface plasmon resonance studies demonstrated that mNdK binds supercoiled plasmid DNA lacking apurinic/apyrimidinic sites with a dissociation constant of 30 +/- 3.2 mum. Plasmid cleavage by mNdK was found to be dependent on the specific divalent metal ion and inhibited by a metal ion chelator. Moreover, the metal ion-dependent DNA cleavage by mNdK was mediated by superoxide radicals as detected by electron paramagnetic resonance. The cleavage reaction was inhibited under nitrogen atmosphere confirming the necessity of molecular oxygen for DNA cleavage. In view of the findings that mNdK is secreted by intracellular mycobacteria and damages the nuclear DNA, it can be postulated that mNdK may cause cell death that could help in the dissemination of the pathogen.  相似文献   

8.
Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets.  相似文献   

9.
Alkylating agents induce genome-wide base damage, which is repaired mainly by N-methylpurine DNA glycosylase (MPG). An elevated expression of MPG in certain types of tumor cells confers higher sensitivity to alkylation agents because MPG-induced apurinic/apyrimidic (AP) sites trigger more strand breaks. However, the determinant of drug sensitivity or insensitivity still remains unclear. Here, we report that the p53 status coordinates with MPG to play a pivotal role in such process. MPG expression is positive in breast, lung and colon cancers (38.7%, 43.4% and 25.3%, respectively) but negative in all adjacent normal tissues. MPG directly binds to the tumor suppressor p53 and represses p53 activity in unstressed cells. The overexpression of MPG reduced, whereas depletion of MPG increased, the expression levels of pro-arrest gene downstream of p53 including p21, 14-3-3σ and Gadd45 but not proapoptotic ones. The N-terminal region of MPG was specifically required for the interaction with the DNA binding domain of p53. Upon DNA alkylation stress, in p53 wild-type tumor cells, p53 dissociated from MPG and induced cell growth arrest. Then, AP sites were repaired efficiently, which led to insensitivity to alkylating agents. By contrast, in p53-mutated cells, the AP sites were repaired with low efficacy. To our knowledge, this is the first direct evidence to show that a DNA repair enzyme functions as a selective regulator of p53, and these findings provide new insights into the functional linkage between MPG and p53 in cancer therapy.  相似文献   

10.
C Malvy  J R Bertrand 《FEBS letters》1986,208(1):155-157
Endonucleases for apurinic sites as well as chemical compounds reacting with aldehydes do not generally differentiate between apurinic and apyrimidinic sites. We have studied the effect of the apurinic site reagent, 9-NH2-ellipticine, on apyrimidinic sites enzymatically generated on PBR322 DNA and compared it to its' action on apurinic PM2 and PBR322 DNAs. In conditions where this compound induces breakage of apurinic sites, it does not display any action on apyrimidinic sites.  相似文献   

11.
Human endonuclease III (hNTH1), a DNA glycosylase with associated abasic lyase activity, repairs various mutagenic and toxic-oxidized DNA lesions, including thymine glycol. We demonstrate for the first time that the full-length hNTH1 positively cooperates in product formation as a function of enzyme concentration. The protein concentrations that caused cooperativity in turnover also exhibited dimerization, independent of DNA binding. Earlier we had found that the hNTH1 consists of two domains: a well conserved catalytic domain, and an inhibitory N-terminal tail. The N-terminal truncated proteins neither undergo dimerization, nor do they show cooperativity in turnover, indicating that the homodimerization of hNTH1 is specific and requires the N-terminal tail. Further kinetic analysis at transition states reveals that this homodimerization stimulates an 11-fold increase in the rate of release of the final product, an AP-site with a 3'-nick, and that it does not affect other intermediate reaction rates, including those of DNA N-glycosylase or AP lyase activities that are modulated by previously reported interacting proteins, YB-1, APE1, and XPG. Thus, the site of modulating action of the dimer on the hNTH1 reaction steps is unique. Moreover, the high intranuclear (2.3 microM) and cytosolic (0.65 microM) concentrations of hNTH1 determined here support the possibility of in vivo dimerization; indeed, in vivo protein cross-linking showed the presence of the dimer in the nucleus of HeLa cells. Therefore, it is likely that the dimerization of hNTH1 involving the N-terminal tail masks the inhibitory effect of this tail and plays a critical role in its catalytic turnover in the cell.  相似文献   

12.
The mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) is a multifunctional protein that plays essential roles in DNA repair and gene regulation. We decomposed the APEs into 12 blocks of highly conserved sequence and structure (molegos). This analysis suggested that residues in molegos common to all APEs, but not to the less specific nuclease, DNase I, would dictate enhanced binding to damaged DNA. To test this hypothesis, alanine was substituted for N226 and N229, which form hydrogen bonds to the DNA backbone 3' of the AP sites in crystal structures of the APE1/DNA complex. While the cleavage rate at AP sites of both N226A and N229A mutants increased, their ability to bind to damaged DNA decreased. The ability of a double mutant (N226A/N229A) to bind damaged DNA was further decreased, while the V(max) was almost identical to that of the wild-type APE1. A double mutant at N226 and R177, a residue that binds to the same phosphate as N229, had a significantly decreased activity and substrate binding. As the affinity for product DNA was decreased in all the mutants, the enhanced reaction rate of the single mutants could be due to alleviation of product inhibition of the enzyme. We conclude that hydrogen bonds to phosphate groups 3' to the cleavage site is essential for APE1's binding to the product DNA, which may be necessary for efficient functioning of the base excision repair pathway. The results indicate that the molego analysis can aid in the redesign of proteins with altered binding affinity and activity.  相似文献   

13.
Cornelius F  Mahmmoud YA  Meischke L  Cramb G 《Biochemistry》2005,44(39):13051-13062
The proteolytic profile after mild controlled trypsin cleavage of shark rectal gland Na,K-ATPase was characterized and compared to that of pig kidney Na,K-ATPase, and conditions for achieving N-terminal cleavage of the alpha-subunit at the T(2) trypsin cleavage site were established. Using such conditions, the shark enzyme N-terminus was much more susceptible to proteolysis than the pig enzyme. Nevertheless, the maximum hydrolytic activity was almost unaffected for the shark enzyme, whereas it was significantly decreased for the pig kidney enzyme. The apparent ATP affinity was unchanged for shark but increased for pig enzyme after N-terminal truncation. The main common effect following N-terminal truncation of shark and pig Na,K-ATPase is a shift in the E(1)-E(2) conformational equilibrium toward E(1). The phosphorylation and the main rate-limiting E(2) --> E(1) step are both accelerated after N-terminal truncation of the shark enzyme, but decreased significantly in the pig kidney enzyme. Some of the kinetic differences, like the acceleration of the phosphorylation reaction, following N-terminal truncation of the two preparations may be due to the fact that under the conditions used for N-terminal truncation, the C-terminal domain of the FXYD regulatory protein of the shark enzyme, PLMS or FXYD10, was also cleaved, whereas the gamma or FXYD2 of the pig enzyme was not. In the shark enzyme, N-terminal truncation of the alpha-subunit abolished association of exogenous PLMS with the alpha-subunit and the functional interactions were abrogated. Moreover, PKC phosphorylation of the preparation, which relieves PLMS inhibition of Na,K-ATPase activity, exposed the N-terminal trypsin cleavage site. It is suggested that PLMS interacts functionally with the N-terminus of the shark Na,K-ATPase to control the E(1)-E(2) conformational transition of the enzyme and that such interactions may be controlled by regulatory protein kinase phosphorylation of the N-terminus. Such interactions are likely in shark enzyme where PLMS has been demonstrated by cross-linking to associate with the Na,K-ATPase A-domain.  相似文献   

14.
Ribosomal P0, P1, and P2 proteins, together with the conserved domain of 28 S rRNA, constitute a major part of the GTPase-associated center in eukaryotic ribosomes. We investigated the mode of assembly in vitro by using various truncation mutants of silkworm P0. When compared with wild type (WT)-P0, the C-terminal truncation mutants CDelta65 and CDelta81 showed markedly reduced binding ability to P1 and P2, which was offset by the addition of an rRNA fragment covering the P0.P1-P2 binding site. The mutant CDelta107 lost the P1/P2 binding activity, whereas it retained the rRNA binding. In contrast, the N-terminal truncation mutants NDelta21-NDelta92 completely lost the rRNA binding, although they retained P1/P2 binding capability, implying an essential role of the N terminus of P0 for rRNA binding. The P0 mutants NDelta6, NDelta14, and CDelta18-CDelta81, together with P1/P2 and eL12, bound to the Escherichia coli core 50 S subunits deficient in L10.L7/L12 complex and L11. Analysis of incorporation of (32)P-labeled P1/P2 into the 50 S subunits with WT-P0 and CDelta81 by sedimentation analysis indicated that WT-P0 bound two copies of P1 and P2, but CDelta81 bound only one copy each. The hybrid ribosome with CDelta81 that appears to contain one P1-P2 heterodimer retained lower but considerable activities dependent on eukaryotic elongation factors. These results suggested that two P1-P2 dimers bind to close but separate regions on the C-terminal half of P0. The results were further confirmed by binding experiments using chimeric P0 mutants in which the C-terminal 81 or 107 amino acids were replaced with the homologous sequences of the archaebacterial P0.  相似文献   

15.
Most common point mutations occurring spontaneously or induced by ionizing radiation are C-->T transitions implicating cytosine as the target. Oxidative cytosine derivatives are the most abundant and mutagenic DNA damage induced by oxidative stress. Base excision repair (BER) pathway initiated by DNA glycosylases is thought to be the major pathway for the removal of these lesions. However, in alternative nucleotide incision repair (NIR) pathway the apurinic/apyrimidinic (AP) endonucleases incise DNA duplex 5' to an oxidatively damaged base in a DNA glycosylase-independent manner. Here, we characterized the substrate specificity of human major AP endonuclease, Ape1, towards 5-hydroxy-2'-deoxycytidine (5ohC) and alpha-anomeric 2'-deoxycytidine (alphadC) residues. The apparent kinetic parameters of the reactions suggest that Ape1 and the DNA glycosylases/AP lyases, hNth1 and hNeil1 repair 5ohC with a low efficiency. Nevertheless, due to the extremely high cellular concentration of Ape1, NIR was the major activity towards 5ohC in cell-free extracts. To address the physiological role of NIR function, we have characterized naturally occurring Ape1 variants including amino acids substitutions (E126A, E126D and D148E) and N-terminal truncated forms (NDelta31, NDelta35 and NDelta61). As expected, all Ape1 mutants had proficient AP endonuclease activity, however, truncated forms showed reduced NIR and 3'-->5' exonuclease activities indicating that these two functions are genetically linked and governed by the same amino acid residues. Furthermore, both Ape1-catalyzed NIR and 3'-->5' exonuclease activities generate a single-strand gap at the 5' side of a damaged base but not at an AP site in duplex DNA. We hypothesized that biochemical coupling of the nucleotide incision and exonuclease degradation may serve to remove clustered DNA damage. Our data suggest that NIR is a backup system for the BER pathway to remove oxidative damage to cytosines in vivo.  相似文献   

16.
Human major apurinic/apyrimidinic endonuclease (APE1) is a multifunctional enzyme that plays a central role in DNA repair through the base excision repair (BER) pathway. Besides BER, APE1 is involved in an alternative nucleotide incision repair (NIR) pathway that bypasses glycosylases. We have analyzed the conformational dynamics and the kinetic mechanism of APE1 action in the NIR pathway. For this purpose we recorded changes in the intensity of fluorescence of 2-aminopurine located in two different positions in a substrate containing dihydrouridine (DHU) during the interaction of the substrate with the enzyme. The enzyme was found to change its conformation within the complex with substrate and also within the complex with the reaction product, and the release of the enzyme from the complex with the product seemed to be the limiting stage of the enzymatic process. The rate constants of the catalytic cleavage of DHU-containing substrates by APE1 were comparable with the appropriate rate constants for substrates containing apurinic/apyrimidinic site or tetrahydrofuran residue, which suggests that NIR is a biologically important process.  相似文献   

17.
Treatment of an end-labeled DNA restriction fragment with the nonprotein chromophore of neocarzinostatin induced lesions which, after treatment with endonuclease IV or putrescine, were expressed as site-specific double-strand breaks. Analysis of the termini at cleavage sites in each strand showed that the neocarzinostatin-induced lesions consisted of an apurinic/apyrimidinic site plus a closely opposed break in the complementary strand. The break always occurred opposite the base two positions upstream from the apurinic/apyrimidinic site and had the 3'-phosphate and 5'-aldehyde termini characteristic of neocarzinostatin-induced breaks. This positioning suggests that neocarzinostatin simultaneously attacks two DNA sugars on opposite edges of the minor groove. The sequence specificity for formation of apurinic/apyrimidinic sites with closely opposed breaks reflected that of neocarzinostatin-induced mutagenesis. The potent mutagenicity of these lesions may be attributable to the presence of closely opposed damage in both DNA strands.  相似文献   

18.
Three-dimensional structure of vinculin bound to actin filaments   总被引:5,自引:0,他引:5  
Vinculin plays a pivotal role in cell adhesion and migration by providing the link between the actin cytoskeleton and the transmembrane receptors, integrin and cadherin. We used a combination of electron microscopy, computational docking, and biochemistry to provide an atomic model of how the vinculin tail binds actin filaments. The vinculin tail actin binding site comprises two distinct regions. One of these regions is exposed in the full-length autoinhibited conformation of vinculin, whereas the second site is sterically occluded by vinculin's N-terminal domain. The partial accessibility of the F-actin binding site in the autoinhibited full-length vinculin structure suggests that F-actin can act as part of a combinatorial input framework with other binding partners such as alpha-catenin or talin to induce vinculin head-tail dissociation, thus promoting vinculin activation. Furthermore, binding to F-actin potentiates a local rearrangement in the vinculin tail that in turn promotes vinculin dimerization and, hence, formation of actin bundles.  相似文献   

19.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

20.
Complement factor H (fH) is a plasma protein that regulates activation of the alternative pathway, and mutations in fH are associated with a rare form of thrombotic microangiopathy (TMA), known as atypical hemolytic uremic syndrome (aHUS). A more common TMA is thrombotic thrombocytopenic purpura, which is caused by the lack of normal ADAMTS-13-mediated cleavage of von Willebrand factor (VWF). We investigated whether fH interacts with VWF and affects cleavage of VWF. We found that factor H binds to VWF in plasma, to plasma-purified VWF, and to recombinant A1 and A2 domains of VWF as detected by co-immunoprecipitation (co-IP) and surface plasmon resonance assays. Factor H enhanced ADAMTS-13-mediated cleavage of recombinant VWF-A2 as determined by quantifying the cleavage products using Western-blotting, enhanced cleavage of a commercially available fragment of VWF-A2 (FRETS-VWF73) as determined by fluorometric assay, and enhanced cleavage of ultralarge (UL) VWF under flow conditions as determined by cleavage of VWF-platelet strings attached to histamine stimulated endothelial cells. Using recombinant full-length and truncated fH molecules, we found that the presence of the C-terminal half of fH molecule is important for binding to VWF-A2 and for enhancing cleavage of the A2 domain by ADAMTS-13. We conclude that factor H binds to VWF and may modulate cleavage of VWF by ADAMTS-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号