首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Effects of type I interferons on Friend retrovirus infection   总被引:1,自引:0,他引:1  
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection.  相似文献   

2.
Samuel MA  Diamond MS 《Journal of virology》2005,79(21):13350-13361
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.  相似文献   

3.
This review is dedicated to the influence of type I IFNs (also called IFN-alpha/beta) in the central nervous system (CNS). Studies in mice with type I IFN receptor or IFN-beta gene deficiency have highlighted the importance of the type I IFN system against CNS viral infections and non-viral autoimmune disorders. Direct antiviral effects of type I IFNs appear to be crucial in limiting early spread of a number of viruses in CNS tissues. Type I IFNs have also proved to be beneficial in autoimmune disorders like multiple sclerosis or experimental autoimmune encephalitis, probably through immunomodulatory effects. Increasing efforts are done to characterize IFN expression and response in the CNS: to identify type I IFN producing cells, to decipher pathways leading to type I IFN expression in those cells, and to identify responding cells. However, reversible and irreversible damages consecutive to chronic exposure of the CNS to type I IFNs underline the importance of a tightly regulated type I IFN homeostasis in this organ.  相似文献   

4.
Cytokines play an important role in modulating the development and function of dendritic cells (DCs). Type I IFNs activate DCs and drive anti-viral responses, whereas IL-4 is the prototype of a Th2 cytokine. Evidence suggests that type I IFNs and IL-4 influence each other to modulate DC functions. We found that two type I IFNs, IFN-alpha and IFN-beta, stimulated a similar costimulatory profile in myeloid resting DCs. IL-4 suppressed the response of myeloid DCs to both type I IFNs in vitro and in vivo by impairing the up-regulation of MHC and costimulatory molecules and the production of cytokines, such as IL-6 and IL-15, and anti-viral genes, such as Mx-1, upon type I IFN stimulation. In dissecting the mechanism underlying this inhibition, we characterized the positive feedback loop that is triggered by IFN-alpha in primary DCs and found that IL-4 inhibited the initial phosphorylation of STAT1 and STAT2 (the transducers of signaling downstream of IFN-alpha and -beta receptors (IFNARs)) and reduced the up-regulation of genes involved in the amplification of the IFN response such as IRF-7, STAT1, STAT2, IFN-beta, and the IFNARs in vitro and in vivo. Therefore, IL-4 renders myeloid DCs less responsive to paracrine type I IFNs and less potent in sustaining the autocrine positive loop that normally amplifies the effects of type I IFNs. This inhibition could explain the increased susceptibility to viral infections observed during Th2-inducing parasitoses.  相似文献   

5.
Macrophages express a spectrum of proinflammatory and regulatory mediators during African trypanosomiasis. Microarray analyses revealed similar profiles of induced genes in macrophages stimulated with the trypanosome soluble variant surface glycoprotein in vitro and in macrophages taken from infected mice. Genes associated with the acute phase response and with type I IFN responses were prominent components of the macrophage activation profiles expressed within 72 h in vitro and in vivo. Thus, induction of proinflammatory gene expression is a characteristic of early trypanosome infection that is driven primarily by soluble variant surface glycoprotein exposure, and it may be that IFN-alpha/beta plays a central role in regulation of early resistance to trypanosomes. To test this hypothesis, we assessed parameters of infection in mouse strains with genetic alterations in the IFN-alpha/beta response pathway. We found that Ifnar1(-/-) mice, which lack the receptor for type I IFNs, exhibited delayed control of parasite burden during the first week of infection and died earlier than did wild-type controls. However, infection of Ubp43(-/-) mice, which are hyperresponsive to type I IFNs, did not exhibit enhanced resistance to trypanosomes. Instead, these animals also failed to control parasite burden and were more susceptible than wild-type animals. Additionally, the Ubp43(-/-) mice exhibited a significant defect in IFN-gamma production, which is definitively linked to host resistance in trypanosomiasis. These results show that type I IFNs play a role in early control of parasites in infected mice but may contribute to down-regulation of IFN-gamma production and subsequent loss of host resistance later in infection.  相似文献   

6.
Virus replication induces the expression of antiviral type I (IFN-alphabeta) and type III (IFN-lambda1-3 or IL-28A/B and IL-29) IFN genes via TLR-dependent and -independent pathways. Although type III IFNs differ genetically from type I IFNs, their similar biological antiviral functions suggest that their expression is regulated in a similar fashion. Structural and functional characterization of the IFN-lambda1 and IFN-lambda3 gene promoters revealed them to be similar to IFN-beta and IFN-alpha genes, respectively. Both of these promoters had functional IFN-stimulated response element and NF-kappaB binding sites. The binding of IFN regulatory factors (IRF) to type III IFN promoter IFN-stimulated response element sites was the most important event regulating the expression of these genes. Ectopic expression of the components of TLR7 (MyD88 plus IRF1/IRF7), TLR3 (Toll/IL-1R domain-containing adapter-inducing factor), or retinoic acid-inducible gene I (RIG-I) signal transduction pathways induced the activation of IFN-lambda1 promoter, whereas the IFN-lambda3 promoter was efficiently activated only by overexpression of MyD88 and IRF7. The ectopic expression of Pin1, a recently identified suppressor for IRF3-dependent antiviral response, decreased the IFN promoter activation induced by any of these three signal transduction pathways, including the MyD88-dependent one. To conclude, the data suggest that the IFN-lambda1 gene is regulated by virus-activated IRF3 and IRF7, thus resembling that of the IFN-beta gene, whereas IFN-lambda2/3 gene expression is mainly controlled by IRF7, thus resembling those of IFN-alpha genes.  相似文献   

7.
8.
The biological activities of type I interferons (IFNs) are mediated by their binding to a heterodimer receptor complex (IFNAR1 and IFNAR2), resulting in the activation of the JAK (JAK1 and TYK2)-STAT (1, 2, 3, 5 isotypes) signalling pathway. Although several studies have indicated that IFN-alpha and IFN-beta can activate complexes containing STAT6, the biological role of this activation is still unknown. We found that exposure of hepatoma cells (HuH7 and Hep3B) to IFN-alpha or IFN-beta led to the activation of STAT6. Activated STAT6 in turn induced the formation of STAT2: STAT6 complexes, which led to the secretion of IL-1Ra. The activation of STAT6 by type I IFN in hepatocytes was mediated by JAK1 and Tyk2. In addition, IFN-alpha or IFN-beta significantly enhanced the stimulatory effect of IL-1beta on production of IL-1Ra. The present study suggests a novel function of IFN-alpha and IFN-beta signalling in human hepatocytes. Our results provide evidence for the mechanism how IFN-alpha and IFN-beta modulate inflammatory responses through activation of STAT6 and production of secreted IL-1Ra.  相似文献   

9.
Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is not well-defined. Here we report that production of beta interferon (IFN-beta) but not production of IFN-alpha, IFN-gamma, or tumor necrosis factor alpha (TNF-alpha) strongly correlates with innate protection against HSV-2. Local delivery of poly(I:C) and CpG oligodeoxynucleotides induced significant production of IFN-beta in the genital tract and provided complete protection against intravaginal (IVAG) HSV-2 challenge. There was no detectable IFN-beta in mice treated with ligands for TLR4 or TLR2, and these mice were not protected against subsequent IVAG HSV-2 challenge. There was no correlation between levels of TNF-alpha or IFN-gamma in the genital tract and protection against IVAG HSV-2 challenge following TLR ligand delivery. Both TNF-alpha(-/-) and IFN-gamma(-/-) mice were protected against IVAG HSV-2 challenge following local delivery of poly(I:C). To confirm that type I interferon, particularly IFN-beta, mediates innate protection, mice unresponsive to type I interferons (IFN-alpha/betaR(-/-) mice) and mice lacking IFN regulatory factor-3 (IRF-3(-/-) mice) were treated with poly(I:C) and then challenged with IVAG HSV-2. There was no protection against HSV-2 infection following poly(I:C) treatment of IFN-alpha/betaR(-/-) or IRF-3(-/-) mice. Local delivery of murine recombinant IFN-beta protected C57BL/6 and IRF-3(-/-) mice against IVAG HSV-2 challenge. Results from these in vivo studies clearly suggest a strong correlation between IFN-beta production and innate antiviral immunity against HSV-2.  相似文献   

10.
Type I interferon (IFN), which includes the IFN-alpha and -beta subtypes, plays an essential role in host defense against influenza A virus. However, the relative contribution of IFN-beta remains unresolved. In mice, type I IFN is effective against influenza viruses only if the IFN-induced resistance factor Mx1 is present, though most inbred mouse strains, including the recently developed IFN-beta-deficient mice, bear only defective Mx1 alleles. We therefore generated IFN-beta-deficient mice carrying functional Mx1 alleles (designated Mx-BKO) and compared them to either wild-type mice bearing functional copies of both IFN-beta and Mx1 (designated Mx-wt) or mice carrying functional Mx1 alleles but lacking functional type I IFN receptors (designated Mx-IFNAR). Influenza A virus strain SC35M (H7N7) grew to high titers and readily formed plaques in monolayers of Mx-BKO and Mx-IFNAR embryo fibroblasts which showed no spontaneous expression of Mx1. In contrast, Mx-wt embryo fibroblasts were found to constitutively express Mx1, most likely explaining why SC35M did not grow to high titers and formed no visible plaques in such cells. In vivo challenge experiments in which SC35M was applied via the intranasal route showed that the 50% lethal dose was about 20-fold lower in Mx-BKO mice than in Mx-wt mice and that virus titers in the lungs were increased in Mx-BKO mice. The resistance of Mx-BKO mice to influenza A virus strain PR/8/34 (H1N1) was also substantially reduced, demonstrating that IFN-beta plays an important role in the defense against influenza A virus that cannot be compensated for by IFN-alpha.  相似文献   

11.
Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus strain undergoing clinical evaluation as a replication-deficient vaccine vector against various infections and tumor diseases. To analyze the basis of its high immunogenicity, we investigated the mechanism of how MVA induces type I interferon (IFN) responses. MVA stimulation of bone marrow-derived dendritic cells (DC) showed that plasmacytoid DC were main alpha IFN (IFN-alpha) producers that were triggered independently of productive infection, viral replication, or intermediate and late viral gene expression. Increased IFN-alpha levels were induced upon treatment with mildly UV-irradiated MVA, suggesting that a virus-encoded immune modulator(s) interfered with the host cytokine response. Mice devoid of Toll-like receptor 9 (TLR9), the receptor for double-stranded DNA, mounted normal IFN-alpha responses upon MVA treatment. Furthermore, mice devoid of the adaptors of TLR signaling MyD88 and TRIF and mice deficient in protein kinase R (PKR) showed IFN-alpha responses that were only slightly reduced compared to those of wild-type mice. MVA-induced IFN-alpha responses were critically dependent on autocrine/paracrine triggering of the IFN-alpha/beta receptor and were independent of IFN-beta, thus involving "one-half" of a positive-feedback loop. In conclusion, MVA-mediated type I IFN secretion was primarily triggered by non-TLR molecules, was independent of virus propagation, and critically involved IFN feedback stimulation. These data provide the basis to further improve MVA as a vaccine vector.  相似文献   

12.
TLRs are considered important for the control of immune responses during endotoxic shock or polymicrobial sepsis. Signaling by TLRs may proceed through the adapter proteins MyD88 or TIR domain-containing adaptor inducinng IFN-beta. Both pathways can lead to the production of type I IFNs (IFN-alphabeta). In the present study, the role of the type I IFN pathway for host defense and immune pathology in sepsis was investigated using a model of mixed bacterial peritonitis. Systemic levels of IFN-alphabeta protein were markedly elevated during septic peritonitis. More detailed analyses revealed production of IFN-beta, but not IFN-alpha subtypes, and identified CD11b+ CD11c- macrophage-like cells as major producers of IFN-beta. The results further demonstrate that in IFN-alphabeta receptor I chain (IFNARI)-deficient mice, the early recruitment of neutrophils to the infected peritoneal cavity was augmented, most likely due to an increased local production of MCP-1 and leukotriene B4. In the absence of IFNARI, peritoneal neutrophils also exhibited enhanced production of reactive oxygen intermediates and elevated expression of Mac-1. Conversely, administration of recombinant IFN-beta resulted in reduced leukotriene B4 levels and decreased peritoneal neutrophil recruitment and activation. Analysis of the cytokine response to septic peritonitis revealed that IFNARI deficiency strongly attenuated late, but not early, hyperinflammation. In accordance with these findings, bacterial clearance and overall survival of IFNARI(-/-) mice were improved. Therefore, the present study reveals critical functions of the type I IFN pathway during severe mixed bacterial infections leading to sepsis. The results suggest that type I IFN exerts predominantly adverse effects under these conditions.  相似文献   

13.
The interferon system of teleost fish   总被引:4,自引:0,他引:4  
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.  相似文献   

14.
15.
16.
Hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), are known to be sensitive to nitric oxide (NO) and to pretreatment with type I and II interferons (alpha interferon [IFN-alpha]/IFN-beta and IFN-gamma, respectively). Elevated serum levels of NO and IFN-gamma have been observed in HFRS patients, but little is known regarding the systemic levels of other IFNs and the possible effects of hantaviruses on innate antiviral immune responses. In Puumala virus-infected HFRS patients (n = 18), we report that the levels of IFN-alpha and IFN-beta are similar, whereas the level of IFN-lambda (type III IFN) is significantly decreased, during acute (day of hospitalization) compared to the convalescent phase. The possible antiviral effects of IFN-lambda on the prototypic hantavirus Hantaan virus (HTNV) replication was then investigated. Pretreatment of A549 cells with IFN-lambda alone inhibited HTNV replication, and IFN-lambda combined with IFN-gamma induced additive antiviral effects. We then studied the effect of postinfection treatment with IFNs. Interestingly, an already-established HTNV infection was insensitive to subsequent IFN-alpha, -beta, -gamma, and -lambda stimulation, and HTNV-infected cells produced less NO compared to noninfected cells when stimulated with IFN-gamma and IL-1beta. Furthermore, less phosphorylated STAT1 after IFN treatment was observed in the nuclei of infected cells than in those of noninfected cells. The results suggest that hantavirus can interfere with the activation of antiviral innate immune responses in patients and inhibit the antiviral effects of all IFNs. We believe that future studies addressing the mechanisms by which hantaviruses interfere with the activation and shaping of immune responses may bring more knowledge regarding HFRS and HCPS pathogenesis.  相似文献   

17.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号