首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Limited trypsinolysis of pig muscle 3-phosphoglycerate kinase yielded a nicked enzyme without loss of catalytic activity [Jiang, S. X. & Vas, M. (1988) FEBS Lett. 231, 151-154]. The reactivation rate of the nicked enzyme after denaturation does not differ substantially from the reactivation rate of the denatured intact enzyme: t 1/2 varies between 70-110 s at 25 degrees C, pH 7.0 in both cases. Thus, the absence of a covalent linkage between the two proteolytic fragments of the enzyme molecule apparently does not affect the refolding. The two proteolytic fragments can be separated by FPLC under denaturing conditions. Fluorescence spectra of the isolated fragments may indicate that the tryptic cleavage site is within the N-terminal domain. Thus, the larger fragment (molecular mass about 30 kDa) probably contains the whole nucleotide-binding C-terminal domain plus a small part of the N-terminal domain. The inactive isolated fragments were used in renaturation experiments to study the reassembly of active 3-phosphoglycerate kinase. Kinetic measurements revealed the presence of a bimolecular rate-limiting step of reactivation. Separate preincubation of the fragments under renaturing conditions did not cause substantial acceleration of reactivation. This implies that assembly of the separate structural units (possibly domains) may limit the reactivation of the intact enzyme.  相似文献   

2.
A multifunctional masquerade-like protein has been isolated, purified, and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. It was isolated by its Escherichia coli binding property, and it binds to formaldehyde-treated Gram-negative bacteria as well as to yeast, Saccharomyces cerevisiae, whereas it does not bind to formaldehyde-fixed Gram-positive bacteria. The intact masquerade (mas)-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme. The 134 kDa of the processed protein yields four subunits of 65, 47, 33, and 29 kDa, and the 129-kDa protein results in four subunits of 63, 47, 33, and 29 kDa in 10% SDS-PAGE under reducing conditions. The 33-kDa protein could be purified by immunoaffinity chromatography using an Ab to the C-terminal part of the mas-like protein. This subunit of the mas-like protein has cell adhesion activity, whereas the two intact proteins, 134 and 129 kDa, have binding activity to LPSs, glucans, Gram-negative bacteria, and yeast. E. coli coated with the mas-like protein were more rapidly cleared in crayfish than only E. coli, suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein suggest that it plays a role as an innate immune protein.  相似文献   

3.
Proline isomerization is well known to cause additional slow phases during protein refolding. We address a new question: does the presence of prolines significantly affect the very fast kinetics that lead to the formation of folding intermediates? We examined both the very slow (10-100 min) and very fast (4 micro s-2.5 ms) folding kinetics of the two-domain enzyme yeast phosphoglycerate kinase by temperature-jump relaxation. Phosphoglycerate kinase contains a conserved cis-proline in position 204, in addition to several trans-prolines. Native cis-prolines have the largest effect on folding kinetics because the unfolded state favors trans isomerization, so we compared the kinetics of a P204H mutant with the wild-type as a proof of principle. The presence of Pro-204 causes an additional slow phase upon refolding from the cold denatured state, as reported in the literature. Contrary to this, the fast folding events are sped up in the presence of the cis-proline, probably by restriction of the conformational space accessible to the molecule. The wild-type and Pro204His mutant would be excellent models for off-lattice simulations probing the effects of conformational restriction on short timescales.  相似文献   

4.
Properties of D-amino-acid oxidase from Rhodotorula gracilis   总被引:2,自引:0,他引:2  
The flavoprotein D-amino-acid oxidase was purified to homogeneity from the yeast Rhodotorula gracilis by a highly reproducible procedure. The amino acid composition of the protein was determined; the protein monomer had a molecular mass of 39 kDa and contained one molecule of FAD. The ratio between A274/A455 was about 8.2. D-Amino-acid oxidase from yeast showed typical flavin spectral perturbations on binding of the competitive inhibitor benzoate and was reduced by D-alanine under anaerobiosis. The enzyme reacted readily with sulfite to form a covalent reversible adduct and stabilized the red anionic form of the flavin semiquinone on photoreduction in the presence of 5-deazariboflavin; the 3,4-dihydro-FAD form was not detectable after reduction with sodium borohydride. Thus D-amino-acid oxidase from yeast exhibited most of the general properties of the dehydrogenase/oxidase class of flavoproteins; at the same time, the enzyme showed some peculiar features with respect to the same protein from pig kidney.  相似文献   

5.
The method aforementioned (Liu, W. and Tsou, C.L. (1987) Biochim. Biophys. Acta 916, 455-464) for the study of the kinetics of irreversible modification of enzyme activity has been applied to the reactivation of guanidine-denatured ribonuclease A, by following the hydrolysis of cyclic CMP during refolding upon diluting a guanidine-denatured enzyme with a substrate-containing buffer. Appropriate equations have been derived to deal with the kinetics of the substrate reaction during the course of activation, while the product formed, 3'CMP, is a competitive inhibitor. When the overall process consists of multiple first-order reactions, the individual rate constants could be obtained by suitable semilogarithmic plots. Moreover, in certain cases, it can be distinguished from the shapes of the plots, whether the overall process consists of parallel or consecutive first-order reactions. The kinetics for the reactivation reaction has been compared to that for the refolding of the substrate binding site, as indicated by complex formation with the competitive inhibitor, 2'CMP, and for the refolding of the molecule as a whole. At pH 6.0 and 25 degrees C, only monophasic first-order reactions could be detected by manual mixing for both the reactivation and the refolding processes. At lower temperatures (0-10 degrees C), both processes consist of two first-order reactions. In all cases, the same rate constants have been obtained for the refolding and reactivation reactions.  相似文献   

6.
Purification and characterization of trimming glucosidase I from pig liver   总被引:5,自引:0,他引:5  
Trimming glucosidase I has been purified about 400-fold from pig liver crude microsomes by fractional salt/detergent extraction, affinity chromatography and poly(ethylene glycol) precipitation. The purified enzyme has an apparent molecular mass of 85 kDa, and is an N-glycoprotein as shown by its binding to concanavalin A-Sepharose and its susceptibility to endo-beta-N-acetylglucosaminidase (endo H). The native form of glucosidase I is unusually resistant to non-specific proteolysis. The enzyme can, however, be cleaved at high, that is equimolar, concentrations of trypsin into a defined and enzymatically active mixture of protein fragments with molecular mass of 69 kDa, 45 kDa and 29 kDa, indicating that it is composed of distinct protein domains. The two larger tryptic fragments can be converted by endo H to 66 kDa and 42 kDa polypeptides, suggesting that glucosidase I contains one N-linked high-mannose sugar chain. Purified pig liver glucosidase I hydrolyzes specifically the terminal alpha 1-2-linked glucose residue from natural Glc3-Man9-GlcNAc2, but is inactive towards Glc2-Man9-GlcNAc2 or nitrophenyl-/methyl-umbelliferyl-alpha-glucosides. The enzyme displays a pH optimum close to 6.4, does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (Ki approximately 2.1 microM), N,N-dimethyl-1-deoxynojirimycin (Ki approximately 0.5 microM) and N-(5-carboxypentyl)-1-deoxynojirimycin (Ki approximately 0.45 microM), thus closely resembling calf liver and yeast glucosidase I. Polyclonal antibodies raised against denatured pig liver glucosidase I, were found to recognize specifically the 85 kDa enzyme protein in Western blots of crude pig liver microsomes. This antibody also detected proteins of similar size in crude microsomal preparations from calf and human liver, calf kidney and intestine, indicating that the enzymes from these cells have in common one or more antigenic determinants. The antibody failed to cross-react with the enzyme from chicken liver, yeast and Volvox carteri under similar experimental conditions, pointing to a lack of sufficient similarity to convey cross-reactivity.  相似文献   

7.
Dihydropyrimidine dehydrogenase was isolated from cytosolic pig liver extracts and purified 3100-fold to apparent homogeneity. Purification made use of ammonium sulfate fractionation, precipitation with acetic acid and chromatography on DEAE-cellulose and 2',5'-ADP-Sepharose with 28% recovery of total activity. The native enzyme has a molecular mass of 206 kDa and is apparently composed of two similar, if not identical, subunits. Proteolytic cleavage reveals two fragments with apparent molecular masses of 92 kDa and 12 kDa. The C-terminal 12-kDa fragment seems to be extremely hydrophobic. The enzyme contains tightly associated compounds including four flavin nucleotide molecules and 32 iron atoms/206-kDa molecule. The iron atoms are probably present in iron-sulfur centers. The flavins released from the enzyme were identified as FAD and FMN in equal amounts. An isoelectric point of 4.65 was determined for the dehydrogenase. Apparent kinetic parameters were obtained for the substrates thymine, uracil, 5-aminouracil, 5-fluorouracil and NADPH.  相似文献   

8.
Triosephosphate isomerase (TIM), whose structure is archetypal of dimeric (beta/alpha)(8) barrels, has a conserved salt bridge (Arg189-Asp225 in yeast TIM) that connects the two C-terminal beta/alpha segments to rest of the monomer. We constructed the mutant D225Q, and studied its catalysis and stability in comparison with those of the wild-type enzyme. Replacement of Asp225 by Gln caused minor drops in k(cat) and K(M), but the catalytic efficiency (k(cat)/K(M)) was practically unaffected. Temperature-induced unfolding-refolding of both TIM samples displayed hysteresis cycles, indicative of processes far from equilibrium. Kinetic studies showed that the rate constant for unfolding was about three-fold larger in the mutant than in wild-type TIM. However, more drastic changes were found in the kinetics of refolding: upon mutation, the rate-limiting step changed from a second-order (at submicromolar concentrations) to a first-order reaction. These results thus indicate that renaturation of yTIM occurs through a uni-bimolecular mechanism in which refolding of the monomer most likely begins at the C-terminal half of its polypeptide chain. From the temperature dependence of the refolding rate, we determined the change in heat capacity for the formation of the transition state from unfolded monomers. The value for the D225Q mutant, which is about 40% of the corresponding value for yTIM, would implicate the folding of only three quarters of a monomer chain in the transition state.  相似文献   

9.
Refolding of pig muscle 3-phosphoglycerate kinase (PGK) from a mixture of its complementary proteolytic fragments that did not correspond to the individual domains resulted in a high degree of reactivation [Vas, M., Sinev, M.A., Kotova, N. & Semisotnov, G.V. (1990) Eur. J. Biochem. 189, 575--579]. An independent refolding of the 27.7 kDa C-terminal proteolytic fragment (which encompasses the whole C domain) has been noted, but the refolding ability of the 16.8-kDa N-terminal proteolytic fragment, which lacks a single subdomain from the N domain, remained to be seen. Here the refolding processes of the isolated fragments are compared. Within the first few seconds of initiation of refolding, pulse-proteolysis experiments show the formation of a structure with moderate protease resistance for both fragments. This structure, however, remains unchanged upon further incubation of the N-terminal fragment, whereas refolding of the C-terminal fragment continues as detected by a further increase in proteolytic resistance. The non-native character of the folding intermediate of the N fragment is indicated by the elevated fluorescence intensity of the bound hydrophobic probe 8-anilino-1-naphtalene sulphonate. Its CD spectrum shows the formation of secondary structure distinct from the native one. The noncooperative phase-transition observed in microcalorimetry indicates the absence of a rigid tertiary structure, in contrast with the refolded C-terminal fragment for which a cooperative transition is seen. Size-exclusion chromatography supported the globular character of the intermediate, and showed its propensity to form dimers. No binding of the substrate, 3-phosphoglycerate (3-PGri), to the isolated N-terminal fragment, could be detected but the presence of the complementary C-terminal fragment led to restoration of the substrate binding ability of the N domain. Thus, refolding of the isolated N-terminal fragment yields a highly flexible, globular, potentially productive intermediate with non-native secondary structure and highly exposed hydrophobic clusters, which favour dimerization.  相似文献   

10.
Trypanosoma brucei has two phosphoglycerate kinase (PGK) isoenzymes, one is particle-bound and localized in glycosomes while the other is present in the cytosol. The cytosolic isoenzyme (cPGK) was 900-fold purified from cultured procyclic trypanosomes by hydrophobic interaction chromatography on phenyl-Sepharose followed by affinity chromatography on 2',3'-ATP-Sepharose and had a specific activity of 275 units/mg protein. cPGK was compared with the purified glycosomal isoenzyme (gPGK) from bloodstream-form trypanosomes as well as with the commercially available PGKs from yeast, rabbit muscle and Spirulina platensis, a blue-green alga. Like all other PGKs, cPGK was a monomeric protein with a molecular mass of approximately 45 kDa similar to that of the PGKs from other organisms but 2 kDa smaller than that of gPGK. Despite this difference in length and a great difference in isoelectric point, the two trypanosome isoenzymes strongly resembled each other in several respects. The kinetic parameters did not differ significantly from each other or from the PGKs of other organisms. Both trypanosome enzymes resembled the enzyme from S. platensis in that they had an almost absolute requirement for ATP, contrary to the enzymes from yeast and rabbit muscle, which were capable of utilizing GTP and ITP also. This difference in substrate specificity may be related to the amino acid substitutions, Trp 308----His and Ala 306----Glu in the adenine-binding site, which are only found in the two Trypanosoma isoenzymes. Kinetic analysis showed that these substitutions do not prevent binding of the ATP analogues, but probably prevent phosphoryl-group transfer. Both isoenzymes displayed an activity optimum at pH 6.0-9.0 similar to that for the enzyme of yeast. Both gPGK and cPGK were inhibited by the trypanocidal drug Suramin. This inhibition could be described as competitive both with ATP and 3-phosphoglycerate with two inhibitor molecules binding to one molecule of enzyme. The gPGK, however, was much more sensitive (Ki app. = 8.0 microM) to Suramin than either the cPGK (Ki app. = 20 microM) or the enzymes from rabbit muscle (Ki app. = 55 microM), yeast (Ki app. = 167 microM) or S. platensis (Ki app. = 250 microM). It is suggested that positive charges on the enzyme's surface may play an important role in the potentiation of the binding of the negatively charged Suramin molecule.  相似文献   

11.
Bann JG  Frieden C 《Biochemistry》2004,43(43):13775-13786
The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the C-terminal domain. To examine the folding properties of PapD, the protein was both uniformly and site-specifically labeled with p-fluoro-phenylalanine ((19)F-Phe) for (19)F NMR studies, in conjunction with those of circular dichroism and fluorescence. In equilibrium denaturation experiments monitored by (19)F NMR, the loss of (19)F-Phe native intensity for both the N- and C-terminal domains shows the same dependence on urea concentration. For the N-terminal domain the loss of native intensity is mirrored by the appearance of separate denatured resonances. For the C-terminal domain, which contains residues Phe 168 and Phe 205, intermediate as well as denatured resonances appear. These intermediate resonances persist at denaturant concentrations well beyond the loss of native resonance intensity and appear in kinetic refolding (19)F NMR experiments. In double-jump (19)F NMR experiments in which proline isomerization does not affect the refolding kinetics, the formation of domain-domain interactions is fast if the protein is denatured for only a short time. However, with increasing time of denaturation the native intensities of the N- and C-terminal domains decrease, and the denatured resonances of the N-terminal domain and the intermediate resonances of the C-terminal domain accumulate. The rate of loss of the N-terminal domain resonances is consistent with a cis to trans isomerization process, indicating that from an equilibrium denatured state the slow refolding of PapD is due to the trans to cis isomerization of one or both of the N-terminal cis proline residues. The data indicate that both the N- and C-terminal domains must fold into a native conformation prior to the formation of domain-domain interactions.  相似文献   

12.
The folding and stability of recombinant homomeric (alpha-only) pyruvate decarboxylase from yeast was investigated. Different oligomeric states (tetramers, dimers and monomers) of the enzyme occur under defined conditions. The enzymatic activity is used as a sensitive probe for structural differences between the active and inactive form (mis-assembled forms, aggregates) of the folded protein. Unfolding kinetics starting from the native protein comprise both the dissociation of the oligomers into monomers and their subsequent denaturation, which could be monitored by stopped-flow kinetics. In the course of unfolding, the tetramers do not directly dissociate into monomers, but via a stable dimeric state. Starting from the unfolded state, a reactivation of homomeric pyruvate decarboxylase requires both refolding to monomers and their correct association to enzymatically active dimers or tetramers. The reactivation yield under the in vitro conditions used follows an optimum behavior.  相似文献   

13.
PA protease (pro-aminopeptidase processing protease) is an extracellular zinc metalloprotease produced by the Gram-negative bacterium Aeromonas caviae T-64. The 590-amino-acid precursor of PA protease is composed of a putative 19-amino-acid signal sequence, a 165-amino-acid N-terminal propeptide, a 33 kDa mature protease domain and an 11 kDa C-terminal propeptide. The proform of PA protease, which was produced as inclusion bodies in Escherichia coli, was subjected to in vitro refolding. It was revealed that the processing of the proform involved a stepwise autoprocessing mechanism. Firstly, the N-terminal propeptide was autocatalytically removed on completion of refolding and secondly, the C-terminal propeptide was autoprocessed after the degradation of the N-terminal propeptide. Both the N- and C-terminal propeptides existed as intact peptides after their successive removal, and they were subsequently degraded gradually. The degradation of the N-terminal propeptide appears to be the rate-limiting step in the maturation of the proform of PA protease.  相似文献   

14.
Islet cell autoantigen (ICA) 512 of type I diabetes is a receptor tyrosine phosphatase-like protein associated with the secretory granules of neurons and endocrine cells including insulin-secreting beta-cells of the pancreas. Here we show that in a yeast two-hybrid assay its cytoplasmic domain binds beta2-syntrophin, a modular adapter which in muscle cells interacts with members of the dystrophin family including utrophin, as well as the signaling molecule neuronal nitric oxide synthase (nNOS). The cDNA isolated by two-hybrid screening corresponded to a novel beta2-syntrophin isoform with a predicted molecular mass of 28 kDa. This isoform included the PDZ domain, but not the C-terminal region, which in full-length beta2-syntrophin is responsible for binding dystrophin-related proteins. In vitro binding of the beta2-syntrophin PDZ domain to ICA512 required both ICA512's C-terminal region and an internal polypeptide preceding its tyrosine phosphatase-like domain. Immunomicroscopy and co-immunoprecipitations from insulinoma INS-1 cells confirmed the occurrence of ICA512-beta2-syntrophin complexes in vivo. ICA512 also interacted in vitro with the PDZ domain of nNOS and ICA512-nNOS complexes were co-immunoprecipitated from INS-1 cells. Finally, we show that INS-1 cells, like muscle cells, contain beta2-syntrophin-utrophin oligomers. Thus, we propose that ICA512, through beta2-syntrophin and nNOS, links secretory granules with the actin cytoskeleton and signaling pathways involving nitric oxide.  相似文献   

15.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5.  相似文献   

16.
Monoclonal antibodies (mAbs) against the soluble form (S-COMT) of catechol-O-methyltransferase (COMT, EC 2.1.1.6) were produced using a purified preparation of the enzyme from pig liver as antigen. The selected monoclonal antibodies recognized the enzyme with different capacities. One of them (Co60-1B/7) showed a significant cross reaction with S-COMT from rat and human liver. A protein band of 23 kDa was recognized by the mAbs on Western blots of the soluble fraction of pig liver. The mAbs were also able to recognize the membrane-bound form of the enzyme, which was found to be mainly localized in the microsomal fraction of pig and rat liver as well as of the human hepatoma cell line Hep G2. The protein bands detected in microsomes had a molecular mass of 26 kDa in pig and rat liver and displayed a slightly higher molecular mass (29 kDa) in the Hep G2 cell line. A single step method for the immunoaffinity purification of pig liver S-COMT was developed by using a Sepharose 4B column to which the mAb Co54-5F/8 was covalently coupled. Acid elution conditions were optimized to obtain the enzyme in active form with a good yield. SDS-PAGE analysis of the purified preparation revealed a single protein band with a molecular mass of 23 kDa with 154-fold enrichment in enzyme activity over the starting material. Since the N-terminus was blocked, purified enzyme preparations were cleaved with trypsin. Two fragments of 22 and 33 amino acids in length could be sequenced by Edman degradation.  相似文献   

17.
Homopolymeric α-2,8-linked sialic acid (PSA) has been found as a capsular component of sepsis- and meningitis-causing bacterial pathogens, and on eukaryotic cells as a post-translational modification of the neural cell adhesion molecule (NCAM). The polysaccharide is specifically recognized and degraded by a phage-encoded enzyme, the endo-N-acetylneuraminidase E (Endo NE). Endo NE therefore has become a valuable tool in the study of bacterial pathogenesis and eukaryotic morphogenesis. In this report we describe the molecular cloning of Endo NE and the expression of a functionally active recombinant enzyme. The cloned DNA sequence (2436 bp) encodes a polypeptide of 811 amino acids, which at the 5′ end contains a totally conserved neuraminidase motif. Expressed in Escherichia coli, the enzyme migrates as a single band of approximately 74 kDa in SDS-PAGE. A central domain of 669 amino acid residues is about 90% homologous to the recently cloned Endo NF. Both phage-induced lysis of bacteria and the catalysis of PSA degradation by the recombinant enzyme are efficiently inhibited by a polyclonal antiserum raised against the intact phage particle. The C-terminal region seems to be essential to enzymatic functions, as truncation of 32 amino acids outside the homology domain completely abolishes Endo NE activity. Our data also indicate that the 38 kDa protein, previously assumed to be a subunit of the Endo NE holoenzyme, is the product of a separate gene locus and is not necessary for in vitro depolymerase activity.  相似文献   

18.
In a recent paper we gave evidence by two-dimensional electrophoresis that, in man, the class II antigen associated glycoprotein p31 (also called Ii, In, M1, DRγ, XMl) is expressed not only in the membranes of B lymphocytes but also in those of muscle, liver and brain. It can therefore be assumed that the p31 is not really associated with the human class II antigens but is a ubiquitous molecule.
Here we demonstrate for the first time that the muscle membranes of cattle and pig contain corresponding polypeptides, with a molecular weight of about 31 kDa and an isoelectric point around 7.5, which comigrate in two-dimensional electrophoresis with p31 derived from the human muscle. Thus, in cattle and pig too, these proteins seem to be equivalent to the class II antigen associated p31, showing a tissue distribution wider than observed up to now. The molecules can be concentrated by ion-exchange chromatography.  相似文献   

19.
1. The structural properties of skeletal muscle phosphofructokinase from euthermic and hibernating jerboa were compared. 2. The enzyme was purified by a rapid procedure; suspended in ammonium sulfate in the presence of ATP, it was found to be stable for three weeks. 3. A specific activity of 76 U/mg and at most 65 U/mg was obtained for the enzyme from the euthermic and hibernating jerboa, respectively. 4. The molecular weight was estimated to be 320 kDa for the oligomer and 80 kDa for the subunit. 5. A unique alanine residue was found at the C-terminal end, suggesting that the enzyme is a tetramer made of four identical subunits. 6. The tetrameric structure of phosphofructokinase was confirmed by using crosslinking with disuccinimidyl esters. 7. The kinetics of formation of the different crosslinked species were found to be in agreement with a model of the tetramer corresponding to a dihedral symmetry with isologuous contacts between protomers. 8. The same molecular characteristics and immunochemical properties were found for the enzyme extracted from the euthermic and hibernating animals.  相似文献   

20.
An alpha 1,2-mannosidase (Man9-mannosidase) involved in N-linked oligosaccharide processing has been purified about 16,000-fold from pig liver crude microsomes (microsomal fractions) by CM-Sepharose and DEAE-Sephacel chromatography, concanavalin A (Con A)-Sepharose chromatography and, as the key step of the procedure, affinity chromatography on immobilized N-5-carboxypentyl-l-deoxymannojirimycin (CP-dMM). On SDS/polyacrylamide-gel electrophoresis under reducing conditions, the isolated enzyme migrated as a single protein band with a molecular mass of 49 kDa. The enzyme does not bind Con A and is not susceptible to glycopeptidase F, indicating that it lacks N-linked oligosaccharides of the high-mannose or complex type. Purified Man9-mannosidase has a pH optimum close to 6.0 and requires bivalent cations for activity, with Ca2+ being most effective. The enzyme is inhibited strongly by basic sugar analogues of mannose such as 1-deoxymannojirimycin (dMM, Ki approximately 5 microM), N-methyl-dMM (Ki approximately 55 microM) and CP-dMM (Ki approximately 150 microM), whereas NN-dimethyl-dMM and the mannosidase II inhibitor swainsonine were hardly or not at all inhibitory. A homogeneous preparation of the 49 kDa enzyme cleaves specifically three of the four alpha 1,2-mannosidic linkages in the natural Man9-GlcNAc2 (M9) substrate. The relative rates by which the parent and intermediate structures are hydrolysed were found to be about 3:2:5 for M9, M8 and M7 respectively. The enzyme displays only marginal activity toward the remaining alpha 1,2-mannosidic linkages in the Man9-GlcNAc2 oligosaccharide (relative rate of M6 hydrolysis approximately 0.02) and is not active against nitrophenyl and methylumbelliferyl alpha-mannosides. This unique substrate specificity suggests that Man9-mannosidase processing differs from that catalysed by other trimming alpha 1,2-mannosidases hitherto reported. A polyclonal antibody raised against the denatured 49 kDa polypeptide not only recognizes a protein band of similar size in Western blots of crude microsomes, but also reacts strongly with a 65 kDa protein species. On trypsin treatment of detergent-solubilized microsomes, the 65 kDa protein is converted specifically into a stable 49 kDa fragment, indicating a precursor-product relationship between the two proteins. We conclude from this observation that the 65 kDa protein represents the intact form of Man9-mannosidase from which the 49 kDa enzyme which we have isolated has been generated, with retention of catalytic activity, by proteolysis during purification. Proteolytic studies with sealed microsomes suggest that the intact 65 kDa enzyme is a protein with a membrane-spanning domain, as well as a cytosolic polypeptide domain of size at least 3 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号