首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   

2.
A 32-bp deletion in CCR5 (CCR5 Delta 32) confers to PBMC resistance to HIV-1 isolates that use CCR5 as a coreceptor. To study this mutation in T cell development, we have screened 571 human thymus tissues for the mutation. We identified 72 thymuses (12.6%) that were heterozygous and 2 (0.35%) that were homozygous for the CCR5 Delta 32 mutation. We found that thymocyte development was normal in both CCR5 Delta 32 heterozygous and homozygous thymuses. In 3% of thymuses we identified a functional polymorphism of CD45RA, in which cortical and medullary thymocytes failed to down-regulate the 200- and 220-kDa CD45RA isoforms during T cell development. Moreover, we found an association of this CD45 functional polymorphism in thymuses with the CCR5 Delta 32 mutation (p = 0.00258). In vitro HIV-1 infection assays with CCR5-using primary isolates demonstrated that thymocytes with the heterozygous CCR5 Delta 32 mutation produced less p24 than did CCR5 wild-type thymocytes. However, the functional CD45RA polymorphism did not alter the susceptibility of thymocytes to HIV-1 infection. Taken together, these data demonstrate association of the CCR5 Delta 32 mutation with a polymorphism in an as yet unknown gene that is responsible for the ability to down-regulate the expression of high m.w. CD45RA isoforms. Although the presence of the CCR5 Delta 32 mutation down-regulates HIV-1 infection of thymocytes, the functional CD45RA polymorphism does not alter the susceptibility of thymocytes to HIV-1 infection in vitro.  相似文献   

3.
The CD45 antigen is essential for normal antigen receptor-mediated signalling in lymphocytes, and different patterns of splicing of CD45 are associated with distinct functions in lymphocytes. Abnormal CD45 splicing has been recognized in humans, caused by a C77G transversion in the gene encoding CD45 (PTPRC). Recently the C77G polymorphism has been associated with multiple sclerosis and increased susceptibility to HIV-1 infection. These studies suggest that the regulation of CD45 splicing may be critical for the proper function of the immune system. Because of these data we examined the frequency of the C77G allele in African and Asian populations from countries with high or low prevalence of HIV infection. Here we report that the variant CD45 C77G allele is absent in African populations. We further show that populations living in the Pamir mountains of Central Asia have a very high prevalence of the C77G variant.  相似文献   

4.
Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at −30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (−30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.  相似文献   

5.
6.
Four mutations of the XPAC gene were identified as molecular bases of different UV-sensitive subgroups of xeroderma pigmentosum (XP) group A. One was a G to C transversion at the last nucleotide of exon 4 in GM1630/GM2062, a little less hypersensitive subgroup than the most sensitive XP2OS/XP12RO. The second mutation was a G to A transition at the last nucleotide of exon 3 in GM2033/GM2090, an intermediate subgroup. Both mutations caused almost complete inactivation of the canonical 5' splice donor site and aberrant RNA splicing. The third mutation was a nucleotide transition altering the Arg-211 codon (CGA) to a nonsense codon (TGA) in another allele of GM2062. The fourth mutation was a nucleotide transversion altering the His-244 codon (CAT) to an Arg codon (CGT) in XP8LO, an intermediate subgroup. Our results strongly suggest that the clinical heterogeneity in XP-A is due to different mutations in the XPAC gene.  相似文献   

7.
CD45, encoded by the protein tyrosine phosphatase receptor type C ( PTPRC) gene, is essentially involved in maturation, activation, and migration of immune cells. Lack of CD45 results in severe immunodeficiency, and alterations of the receptor may result in autoimmunity. Here, we describe a novel mutation in PTPRCas a cause of variant CD45 expression in humans. Several members of a multiple sclerosis multiplex family showed expression of CD45RA on memory T cells and monocytes. The variant expression pattern was linked to the PTPRCgene by DNA microsatellite studies. DNA analysis identified a novel point mutation in exon 4 (position 59 C-->A) in all family members with variant CD45 expression, but not in donors with normal CD45 expression. The mutation interferes with alternative splicing and alters amino acid sequence (H-->Q), interfering with antibody binding to the CD45RA domain. Overall, we describe the first mutation in PTPRCthat interferes with splicing and results in surface expression of a structurally altered CD45 molecule in humans.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS), consisting of oculocutaneous albinism and a bleeding diathesis due to the absence of platelet dense granules, displays extensive locus heterogeneity. HPS1 mutations cause HPS-1 disease, and ADTB3A mutations cause HPS-2 disease, which is known to involve abnormal intracellular vesicle formation. A third HPS-causing gene, HPS3, was recently identified on the basis of homozygosity mapping of a genetic isolate of HPS in central Puerto Rico. We now describe the clinical and molecular characteristics of eight patients with HPS-3 who are of non-Puerto Rican heritage. Five are Ashkenazi Jews; three of these are homozygous for a 1303+1G-->A splice-site mutation that causes skipping of exon 5, deleting an RsaI restriction site and decreasing the amounts of mRNA found on northern blotting. The other two are heterozygous for the 1303+1G-->A mutation and for either an 1831+2T-->G or a 2621-2A-->G splicing mutation. Of 235 anonymous Ashkenazi Jewish DNA samples, one was heterozygous for the 1303+1G-->A mutation. One seven-year-old boy of German/Swiss extraction was compound heterozygous for a 2729+1G-->C mutation, causing skipping of exon 14, and resulting in a C1329T missense (R396W), with decreased mRNA production. A 15-year-old Irish/English boy was heterozygous for an 89-bp insertion between exons 16 and 17 resulting from abnormal splicing; his fibroblast HPS3 mRNA is normal in amount but is increased in size. A 12-year-old girl of Puerto Rican and Italian background has the 3,904-bp founder deletion from central Puerto Rico on one allele. All eight patients have mild symptoms of HPS; two Jewish patients had received the diagnosis of ocular, rather than oculocutaneous, albinism. These findings expand the molecular diagnosis of HPS, provide a screening method for a mutation common among Jews, and suggest that other patients with mild hypopigmentation and decreased vision should be examined for HPS.  相似文献   

9.
The 32-bp deletion (CCR5del32 mutation) in the CCR5 (chemokine (C-C motif) receptor 5) gene, encoding CCR5 chemokine receptor, is one of the factors determining natural resistance to human immunodeficiency virus (HIV-1) infection. In the present study, the samples of Russians (n = 107), Tuvinians (n = 50), and HIV-infected individuals were examined for the presence of CCR5del32 mutation in the CCR5 gene. The CCR5del32 allele frequency in Russians and Tuvinians constituted 7.84 and 2%, respectively. Among HIV-1 infected individuals, two groups, of macrophage-tropic HIV-1 strain- and T-cell-tropic HIV-1 strain-infected were distinguished. The CCR5del32 allele frequency in the first group (6.45%) was lower than in the second one (8.73%). Statistical treatment of the HIV-1 infected individuals typing data showed that the difference in the CCR5del32 allele frequencies between the groups of sexually (macrophage-tropic) and parenterally (T-cell-tropic) infected individuals observed was within the limit of random deviation.  相似文献   

10.
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4(+)-transformed cells or pharmacological inhibition of G(alpha)i proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Delta32/Delta32). Expression of wild-type (wt) CCR5 in ccr5 Delta32/Delta32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4(+) cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4(+) T lymphocytes or macrophages.  相似文献   

11.
12.
We identified a splicing mutation in a patient with Ehlers-Danlos syndrome type IV, a heritable connective tissue disorder associated with dysfunctions of type III collagen. The mutation was first localized in the patient's type III procollagen mRNA by amplifying the reverse transcribed product in several overlapping fragments using the polymerase chain reaction. Amplified products spanning exon 24-26 sequences displayed two distinct fragments, one of normal size and the other lacking the 99 base pairs of exon 25. Sequencing of amplified genomic products identified a G to T transversion at position +5 of the splice donor site of intron 25 in one of the patient's procollagen III genes. Expression of allelic minigene constructs correlated the T for G substitution with skipping of exon 25 sequences. Like previously characterized splicing mutations in other collagen genes, lowering the temperature at which the patient's fibroblasts were incubated nearly abolished exon skipping. As a part of this study, we also identified a highly polymorphic, intronic DNA sequence whose different allelic forms can be detected easily by the polymerase chain reaction technique.  相似文献   

13.
Exonic sequence variations may induce exon inclusion or exclusion from the mature mRNA by disrupting exonic regulatory elements and/or by affecting a nuclear reading frame scanning mechanism. We have carried out a systematic study of the effect on cystic fibrosis transmembrane regulator exon 9 splicing of natural and site-directed sequence mutations. We have observed that changes in the splicing pattern were not related to the creation of premature termination codons, a fact that indicates the lack of a significant nuclear check of the reading frame in this system. In addition, the splice pattern could not be predicted by available Ser/Arg protein matrices score analysis. An extensive site-directed mutagenesis of the 3' portion of the exon has identified two juxtaposed splicing enhancer and silencer elements. The study of double mutants at these regulatory elements showed a complex regulatory activity. For example, one natural mutation (146C) enhances exon inclusion and overrides all of the downstream silencing mutations except for a C to G transversion (155G). This unusual effect is explained by the creation of a specific binding site for the inhibitory splicing factor hnRNPH. In fact, on the double mutant 146C-155G, the silencing effect is dominant. These results indicate a strict dependence between the two juxtaposed enhancer and silencer sequences and show that many point mutations in these elements cause changes in splicing efficiency by different mechanisms.  相似文献   

14.
Constant denaturant capillary electrophoresis (CDCE), based on co-operative DNA melting equilibria, has the resolving power to separate single nucleotide mutants from wild type sequences. We used this technique to study mutations in a 70-bp isomelting domain of the human HPRT gene, which included the entire exon 5 and its flanking splice donor and acceptor sites. Pooled samples of 6-thioguanine selected T-cell clones from 51 healthy donors representing a total of approximately 1000 individual HPRT mutants were analysed. Slow moving peaks from the heteroduplex part of the CDCE electropherograph were collected and subjected to a second round of PCR and CDCE analysis, followed by DNA sequencing. Five independent mutations were detected. Four were splicing errors; one insertion of CC and two G-->A transitions in the splice donor site of intron 5, and one G-->C transversion in the splice acceptor site of intron 4. The fifth mutation was a missense transversion, T389>G. A reconstruction experiment, in which DNA with known mutation was mixed with wild type DNA, showed the sensitivity of mutation detection to be better than 1:100 under the conditions used in this study. These results demonstrate the high sensitivity of the CDCE-method for mutation screening.  相似文献   

15.
Natural killer T (NKT) cells represent an important regulatory T cell subset that develops in the thymus and contains immature (NK1.1(lo)) and mature (NK1.1(hi)) cell subsets. Here we show in mice that an inherited mutation in heterogeneous ribonucleoprotein L-like protein (hnRNPLL(thunder)), that shortens the survival of conventional T cells, has no discernible effect on NKT cell development, homeostasis or effector function. Thus, Hnrpll deficiency effectively increases the NKT∶T cell ratio in the periphery. However, Hnrpll mutation disrupts CD45RA, RB and RC exon silencing of the Ptprc mRNA in both NKT and conventional T cells, and leads to a comparably dramatic shift to high molecular weight CD45 isoforms. In addition, Hnrpll mutation has a cell intrinsic effect on the expression of the developmentally regulated cell surface marker NK1.1 on NKT cells in the thymus and periphery but does not affect cell numbers. Therefore our results highlight both overlapping and divergent roles for hnRNPLL between conventional T cells and NKT cells. In both cell subsets it is required as a trans-acting factor to regulate alternative splicing of the Ptprc mRNA, but it is only required for survival of conventional T cells.  相似文献   

16.
17.
CD45 is crucial for normal lymphocyte signalling, and altered CD45 expression has major effects on immune function. Both mice and humans lacking CD45 expression are severely immunodeficient, and single-nucleotide polymorphisms in the CD45 gene that cause altered splicing have been associated with autoimmune and infectious diseases. Recently, we identified an exon 6 A138G polymorphism resulting in an increased proportion of activated CD45RO T cells and altered immune function. Here we report a significantly reduced frequency of the 138G allele in hepatitis C Japanese patients and a possibly reduced frequency in type I diabetes. The allele is widely distributed in the Far East and India, indicating that it may have a significant effect on disease burden in a large part of the human population.  相似文献   

18.
Expression of the CD45 Ag in hemopoietic cells is essential for normal development and function of lymphocytes, and both mice and humans lacking expression exhibit SCID. Human genetic variants of CD45, the exon 4 C77G and exon 6 A138G alleles, which alter the pattern of CD45 isoform expression, are associated with autoimmune and infectious diseases. We constructed transgenic mice expressing either an altered level or combination of CD45 isoforms. We show that the total level of CD45 expressed is crucial for normal TCR signaling, lymphocyte proliferation, and cytokine production. Most importantly, transgenic lines with a normal level, but altered combinations of CD45 isoforms, CD45(RABC/+) and CD45(RO/+) mice, which mimic variant CD45 expression in C77G and A138G humans, show more rapid onset and increased severity of experimental autoimmune encephalomyelitis. CD45(RO/+) cells produce more TNF-alpha and IFN-gamma. Thus, for the first time, we have shown experimentally that it is the combination of CD45 isoforms that affects immune function and disease.  相似文献   

19.
We sought to determine the frequency of the genetic variations in the Troponin T (TNNT2) gene and its association in Indian cardiomyopathy patients. Sequencing of the entire TNNT2 gene in 162 hypertrophic cardiomyopathy (HCM) patients, along with 179 healthy controls, revealed a total of 15 variants. These included an A28V missense mutation, a novel single-nucleotide polymorphism (SNP) (g.7239;G→A) predicted to disturb the splicing significantly, three SNPs, rs3729547 (C→T), rs3729843 (G→A), rs3729842 (C→T), which were in high linkage disequilibrium, and a 5 bp polymorphism that skipped exon 4 during splicing, which was found to be significantly higher in HCM patients (del/del genotype, p=0.00011; deletion allele, p=0.00008). Further studies on the 5 bp polymorphism in 2092 randomly selected individuals belonging to 39 ethnic and endogamous populations from 19 states of India, and representing the major linguistic Indian families, revealed that the South and the Northwest Indians have a high frequency of 5 bp deletions. The missense mutations in TNNT2 are responsible for 15%-20% of familial HCM by impairing the function of the heart muscle. However, other than the 5 bp polymorphism, our comprehensive study on the Indian HCM patients have lowered the occurrence and overall prevalence of supposedly more aggressive and worst disease causing percentage of missense mutations in TNNT2 dramatically.  相似文献   

20.
The 77C-->G mutation in exon A of the human CD45 gene occurs with low frequency in healthy individuals. An enhanced frequency of 77C-->G individuals has been reported in cohorts of patients suffering from multiple sclerosis, systemic sclerosis, autoimmune hepatitis, and HIV-1. To investigate the mechanisms by which the variant allele may contribute to disease susceptibility, we compared T cell reactivity in heterozygous carriers of the mutation (healthy individuals and multiple sclerosis patients) and wild-type controls. In vitro-generated T cell lines and freshly isolated CD4+CD45R0+ primed/memory T cells from 77C-->G individuals aberrantly expressed CD45RA isoforms and showed enhanced proliferation and IL-2 production when stimulated with anti-TCR/CD3 mAb or Ag. Mutant T cell lines contained a more active pool of p56lck tyrosine kinase and responded with increased phosphorylation of Zap70 and TCR-zeta and an enhanced Ca2+ flux to TCR/CD3 stimulation. These data suggest that 77C-->G may act as a risk factor for certain diseases by increasing the intensity of TCR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号