首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Min K  Cho M  Han SY  Shim YB  Ku J  Ban C 《Biosensors & bioelectronics》2008,23(12):1819-1824
Tuberculosis is the most frequent cause of infection-related death worldwide. We constructed a simple and direct electrochemical sensor to detect interferon (IFN)-gamma, a selective marker for tuberculosis pleurisy, using its RNA and DNA aptamers. IFN-gamma was detected by its 5'-thiol-modified aptamer probe immobilized on the gold electrode. Interaction between IFN-gamma and the aptamer was recorded using electrochemical impedance spectroscopy and quartz crystal microbalance (QCM) with high sensitivity. The RNA-aptamer-based sensor showed a low detection limit of 100 fM, and the DNA-aptamer-based sensor detected IFN-gamma to 1 pM in sodium phosphate buffer. With QCM analysis, the aptamer immobilized on the electrode and IFN-gamma bound to the aptamer probe was quantified. This QCM result shows that IFN-gamma exists in multimeric forms to interact with the aptamers, and the RNA aptamer prefers the high multimeric state of IFN-gamma. Such a preference may describe the low detection limit of the RNA aptamer shown by impedance analysis. In addition, IFN-gamma was detected to 10 pM by the DNA aptamer in fetal bovine serum, a mimicked biological system, which has similar components to pleural fluid.  相似文献   

2.
Aptamers are nucleic acid bioreceptors that have been used in various applications including medical diagnostics and as therapeutic agents. Identifying the most optimal aptamer for a particular application is very challenging. Here, we for the first time have developed a high-throughput method for accurately quantifying aptamer binding affinity, specificity, and cross-reactivity via the kinetics of aptamer digestion by exonucleases. We demonstrate the utility of this approach by isolating a set of new aptamers for fentanyl and its analogs, and then characterizing the binding properties of 655 aptamer–ligand pairs using our exonuclease digestion assay and validating the results with gold-standard methodologies. These data were used to select optimal aptamers for the development of new sensors that detect fentanyl and its analogs in different analytical contexts. Our approach dramatically accelerates the aptamer characterization process and streamlines sensor development, and if coupled with robotics, could enable high-throughput quantitative analysis of thousands of aptamer–ligand pairs.  相似文献   

3.
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.  相似文献   

4.
To utilize aptamers as molecular recognition agents in biosensors and biodiagnostics, it is important to develop strategies for reliable immobilization of aptamers so that they retain their biophysical characteristics and binding abilities. Here we report on quartz crystal microbalance (QCM) measurements and atomic force microscope (AFM)-based force spectroscopy studies to evaluate aptasensors fabricated by different modification strategies. Gold surfaces were modified with mixed self assembled monolayers (SAMs) of aptamer and oligoethylene glycol (OEG) thiols (HS-C(11)-(EG)(n)OH, n=3 or 6) to impart resistance to nonspecific protein adsorption. By affinity analysis, we show that short OEG thiols have less impact on aptamer accessibility than longer chain thiols. Backfilling with OEG as a step subsequent to aptamer immobilization provides greater surface coverage than using aptamer and OEG thiol to form a mixed SAM in one-step. Immunoglobulin E and vascular endothelial growth factor (VEGF) were studied as target proteins in these experiments. Binding forces obtained by these strategies are similar, demonstrating that the biophysical properties of the aptamer on the sensors are independent from the immobilization strategy. The results present mixed SAMs with aptamers and co-adsorbents as a versatile strategy for aptamer sensor platforms including ultrasensitive biosensor design.  相似文献   

5.
One of the major limitations of the use of phosphodiester oligonucleotides in cells is their rapid degradation by nucleases. To date, several chemical modifications have been employed to overcome this issue but insufficient efficacy and/or specificity have limited their in vivo usefulness. In this work conformationally restricted nucleotides, locked nucleic acid (LNA), were investigated to design nuclease resistant aptamers targeted against the HIV-1 TAR RNA. LNA/DNA chimeras were synthesized from a shortened version of the hairpin RNA aptamer identified by in vitro selection against TAR. The results indicate that these modifications confer good protection towards nuclease digestion. Electrophoretic mobility shift assays, thermal denaturation monitored by UV-spectroscopy and surface plasmon resonance experiments identified LNA/DNA TAR ligands that bind to TAR with a dissociation constant in the low nanomolar range as the parent RNA aptamer. The crucial G, A residues that close the aptamer loop remain a key structural determinant for stable LNA/DNA chimera–TAR complexes. This work provides evidence that LNA modifications alternated with DNA can generate stable structured RNA mimics for interacting with folded RNA targets.  相似文献   

6.
In vitro selection of specific RNA aptamers for the NFAT DNA binding domain   总被引:2,自引:0,他引:2  
Nuclear factor of activated T cells (NFAT) plays a central role in the immune response, and the immuno-suppressive drugs, cyclosporin A and FK-506, have been developed to inhibit it. However, due to the toxic effects of these drugs, which derive from their ability to inhibit calcineurin in non-immune tissues, the identification of small compounds that target NFAT directly could be an approach to developing less toxic immunosuppressive therapy. Using an in vitro selection technology termed SELEX on a combinatorial RNA library with 40 nucleotide-long random sequences, we have isolated two RNA aptamers to the NFAT DNA binding domain (DBD). Gel retardation assays and surface plasmon resonance measurements showed that the aptamers have a specific and high affinity (apparent KD~10 to 100 nM) for the NFAT DBD. Enzymatic probing analysis showed that the two RNA aptamers have similar structures and share a sequence that forms an apical loop. Moreover, RNase footprinting analysis showed that the shared sequence (GATATGAAGGA/ TGTG/AGAGAG) is critical for binding to both NFATp DBD and NFATc DBD. These results suggest that short RNAs identified in this study is a specific aptamer to NFAT DBD, and hence could be applied not only for the delineation of NFAT functions but for the development of potent immune modulating lead compounds.  相似文献   

7.
In vitro selection was performed to identify DNA aptamers against the TAR RNA stem-loop structure of HIV-1. A counterselection step allowed the elimination of kissing complex-forming aptamers previously selected (Boiziau et al. J. Biol. Chem. 1999; 274:12730). This led to the emergence of oligonucleotides, most of which contained two consensus sequences, one targeted to the stem 3'-strand (5'-CCCTAGTTA) and the other complementary to the TAR apical loop (5'-CTCCC). The best aptamer could be shortened to a 19-mer oligonucleotide, characterized by a dissociation constant of 50 nM. A 16-mer oligonucleotide complementary to the TAR stem 3'-strand could also be derived from the identified aptamers, with an equal affinity (Kd = 50 nM). Experiments performed to elucidate the interaction between TAR and the aptamers (UV melting measures, enzymatic and chemical footprints) demonstrated that the TAR stem 5'-strand was not simply displaced as a result of the complex formation but unexpectedly remained associated on contact with the antisense oligonucleotide. We suggest that a multistranded structure could be formed.  相似文献   

8.
RNA aptamers specific for bovine thrombin   总被引:4,自引:0,他引:4  
Bovine thrombin is widely used in clinical wound healing after surgery. There is 85% homology between bovine thrombin and human thrombin, so most antibodies against bovine thrombin cross-react with human thrombin. Rare antibodies against bovine thrombin but not cross-reacting with human thrombin have been reported. RNA ligands (aptamers) have been used to bind to target molecules with sometimes higher specificity than antibodies. Here we report the isolation of aptamers specific for bovine thrombin by systematic evolution of ligands by exponential enrichment (SELEX) from an RNA pool containing a 25-nucleotide randomized region. After seven rounds of selection, two aptamers specific for bovine thrombin were identified with a K(d) of 164 and 240 nM, respectively. Significantly, these aptamers do not bind to human thrombin. Secondary structure prediction revealed potential stem-loop structures for these RNAs. Both RNA aptamers inhibit only bovine thrombin-catalyzed fibrin clot formation in vitro. Competition assay results suggested that the RNA aptamers might bind to the electropositive domain of bovine thrombin, that is, heparin-binding site, instead of fibrinogen-recognition exosite. The resulting bovine-specific thrombin inhibitor might be used in some clinical applications when bovine thrombin activity needs to be contained or in research where human and bovine thrombin need to be distinguished.  相似文献   

9.
10.
Systems biology along with what is now classified as cytomics provides an excellent opportunity for cytometry to become integrated into studies where identification of functional proteins in complex cellular mixtures is desired. The combination of cell sorting with rapid protein-profiling platforms offers an automated and rapid technique for greater clarity, accuracy, and efficiency in identification of protein expression differences in mixed cell populations. The integration of cell sorting to purify cell populations opens up a new area for proteomic analysis. This article outlines an approach in which well defined cell analysis and separation tools are integrated into the proteomic programs within a core laboratory. In addition we introduce the concepts of flow cytometry sorting to demonstrate the importance of being able to use flow cytometry as a cell separation technology to identify and collect purified cell populations. Data demonstrating the speed and versatility of this combination of flow cytometry-based cell separation and protein separation and subsequent analysis, examples of protein maps from purified sorted cells, and an analysis of the overall procedure will be shown. It is clear that the power of cell sorting to separate heterogeneous populations of cells using specific phenotypic characteristics increases the power of rapid automated protein separation technologies.  相似文献   

11.
Direct selection of RNA beacon aptamers   总被引:1,自引:0,他引:1  
A method for the direct selection of RNA molecules that can be easily converted into beacon aptamers is presented. Beacon aptamers are fluorescently labeled nucleic acids that signal the presence of a specific ligand through changes in fluorescence intensity. Typically, ligand binding causes an increase in fluorescence intensity by inducing a conformational change that separates a fluorophore/quencher pair. The method presented here simultaneously selects for ligand binding and induction of an appropriate conformational change. The method was tested by selecting RNA molecules that can detect the aminoglycoside antibiotic tobramycin. After 14 rounds of selection, two sequence families emerged. Upon conversion into beacon aptamers, representatives of the two selected sequence families specifically detected tobramycin, while a negative control RNA that did not survive the selection protocol did not function as a tobramycin beacon aptamer.  相似文献   

12.
Antibody-based detection systems are widely used, but in the cases of immunoprecipitations and enzyme-linked immunoassays, they can be laborious. These techniques require the preparation of at least two kinds of non-cross-reactive immunoglobulin Gs (IgGs), usually made from different species against the single target molecule. Aptamers composed of nucleic acids possess strict recognition ability for the target molecule's three-dimensional structure and, thus, are considered to act like IgG. In this study, experimental trials were designed to combine the advantages of IgG and aptamers. For this purpose, aptamers against rabbit IgG were identified by in vitro selection. One of the obtained aptamers had a dissociation constant lower than 15 pM to the rabbit IgG. It bound specifically to the constant region of the rabbit IgG, and no binding was observed with mouse or goat IgG. Moreover, this aptamer recognized only the native form of rabbit IgG and could not bind the sodium dodecyl sulfate (SDS)-denatured form. These features show the advantage of using the aptamer as a secondary probing agent rather than the usual secondary antibodies.  相似文献   

13.
RNA aptamers specifically interact with the prion protein PrP.   总被引:9,自引:0,他引:9       下载免费PDF全文
We have isolated RNA aptamers which are directed against the recombinant Syrian golden hamster prion protein rPrP23-231 (rPrPc) fused to glutathione S-transferase (GST). The aptamers did not recognize the fusion partner GST or the fusion protein GST::rPrP90-231 (rPrP27-30), which lacks 67 amino acids from the PrP N terminus. The aptamer-interacting region of PrPc was mapped to the N-terminal amino acids 23 to 52. Sequence analyses suggest that the RNA aptamers may fold into G-quartet-containing structural elements. Replacement of the G residues in the G quartet scaffold with uridine residues destroyed binding to PrP completely, strongly suggesting that the G quartet motif is essential for PrP recognition. Individual RNA aptamers interact specifically with prion protein in brain homogenates from wild-type mice (C57BL/6), hamsters (Syrian golden), and cattle as shown by supershifts obtained in the presence of anti-PrP antibodies. No interaction was observed with brain homogenates from PrP knockout mice (prn-p(0/0)). Specificity of the aptamer-PrP interaction was further confirmed by binding assays with antisense aptamer RNA or a mutant aptamer in which the guanosine residues in the G tetrad scaffold were replaced by uridine residues. The aptamers did not recognize PrP27-30 in brain homogenates from scrapie-infected mice. RNA aptamers may provide a first milestone in the development of a diagnostic assay for the detection of transmissible spongiform encephalopathies.  相似文献   

14.
In vitro selection of RNA aptamers that bind to a specific ligand usually begins with a random pool of RNA sequences. We propose a computational approach for designing a starting pool of RNA sequences for the selection of RNA aptamers for specific analyte binding. Our approach consists of three steps: (i) selection of RNA sequences based on their secondary structure, (ii) generating a library of three-dimensional (3D) structures of RNA molecules and (iii) high-throughput virtual screening of this library to select aptamers with binding affinity to a desired small molecule. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and developed a protocol for RNA 3D structure prediction. As verification, we tested the performance of in silico selection on a set of six known aptamer–ligand complexes. The structures of the native sequences for the ligands in the testing set were among the top 5% of the selected structures. The proposed approach reduces the RNA sequences search space by four to five orders of magnitude—significantly accelerating the experimental screening and selection of high-affinity aptamers.  相似文献   

15.
The RNA-dependent RNA polymerase (NS5B) of the hepatitis C virus (HCV) plays a key role in the life cycle of the virus. In order to find inhibitors of the HCV polymerase, we screened a library of 81 nucleotide (nt)-long synthetic DNA containing 35 random nucleotides by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) approach. Thirty ligands selected for their binding affinity to the NS5B were classified into four groups on the basis of their sequence homologies. Among the selected molecules, two were able to inhibit in vitro the polymerase activity of the HCV NS5B. These aptamers appeared to be specific for HCV polymerase, as no inhibition of poliovirus 3D polymerase activity was observed. The binding and inhibitory potential of one aptamer (27v) was associated with the 35 nt-long variable region. This oligonucleotide displayed an apparent dissociation constant (K(d)) in the nanomolar range. Our results showed that it was able to compete with RNA templates corresponding to the 3'-ends of the (+) and the (-) HCV RNA for binding to the polymerase. The fact that a DNA aptamer could interfere with the binding of natural templates of the enzyme could help in performing structure-function analysis of the NS5B and might constitute a basis for further structure-based drug design of this crucial enzyme of HCV replication.  相似文献   

16.
17.
In vitro selection was performed in a DNA library, made of oligonucleotides with a 30-nucleotide random sequence, to identify ligands of the human immunodeficiency virus type-1 trans-activation-responsive (TAR) RNA element. Aptamers, extracted after 15 rounds of selection-amplification, either from a classical library of sequences or from virtual combinatorial libraries, displayed an imperfect stem-loop structure and presented a consensus motif 5'ACTCCCAT in the apical loop. The six central bases of the consensus were complementary to the TAR apical region, giving rise to the formation of RNA-DNA kissing complexes, without disrupting the secondary structure of TAR. The RNA-DNA kissing complex was a poor substrate for Escherichia coli RNase H, likely due to steric and conformational constraints of the DNA/RNA heteroduplex. 2'-O-Methyl derivatives of a selected aptamer were binders of lower efficiency than the parent aptamer in contrast to regular sense/antisense hybrids, indicating that the RNA/DNA loop-loop region adopted a non-canonical heteroduplex structure. These results, which allowed the identification of a new type of complex, DNA-RNA kissing complex, demonstrate the interest of in vitro selection for identifying non-antisense oligonucleotide ligands of RNA structures that are of potential value for artificially modulating gene expression.  相似文献   

18.
Novel aspects of systems biology and clinical cytomics.   总被引:1,自引:0,他引:1  
The area of Cytomics and Systems Biology became of great impact during the last years. In some fields of the leading cytometric techniques it represents the cutting edge today. Many different applications/variations of multicolor staining were developed for flow- or slide-based cytometric analysis of suspensions and sections to whole animal analysis. Multispectral optical imaging can be used for studying immunological and tumorigenic processes. New methods resulted in the establishment of lipidomics as the systemic research of lipids and their behavior. All of these development push the systemic approach of the analysis of biological specimens to enhance the outcome in the clinic and in drug discovery programs.  相似文献   

19.
Specific RNA recognition of proteins containing the double-strand RNA-binding domain (dsRBD) is essential for several biological pathways such as ADAR-mediated adenosine deamination, localization of RNAs by Staufen, or RNA cleavage by RNAse III. Structural analysis has demonstrated the lack of base-specific interactions of dsRBDs with either a perfect RNA duplex or an RNA hairpin. We therefore asked whether in vitro selections performed in parallel with individual dsRBDs could yield RNAs that are specifically recognized by the dsRBD on which they were selected . To this end, SELEX experiments were performed using either the second dsRBD of the RNA-editing enzyme ADAR1 or the second dsRBD of Xlrbpa, a homolog of TRBP that is involved in RISC formation. Several RNA families with high binding capacities for dsRBDs were isolated from either SELEX experiment, but no discrimination of these RNAs by different dsRBDs could be detected. The selected RNAs are highly structured, and binding regions map to two neighboring stem-loops that presumably form stacked helices and are interrupted by mismatches and bulges. Despite the lack of selective binding of SELEX RNAs to individual dsRBDS, selected RNAs can efficiently interfere with RNA editing in vivo.  相似文献   

20.
The accurate localization of proteins in fixed cells is important for many studies in cell biology, but good fixation is often antagonistic to good immunolabeling, given the density of well-preserved cells and the size of most labeled antibody probes. We therefore explored the use of single-stranded oligonucleotides (aptamers), which can bind to proteins with very high affinity and specificity but which are only approximately 10 kD. To evaluate these probes for general protein localization, we sought an aptamer that binds to a widely used protein tag, the green fluorescent protein (GFP). Although this quest was not successful, we were able to solve several practical problems that will confront any such labeling effort, e.g., the rates at which oligonucleotides enter fixed cells of different kinds and the extent of nonspecific oligonucleotide binding to both mammalian and yeast cell structures. Because such localization methods would be of particular value for electron microscopy of optimally fixed material, we also explored the solubility of aptamers under conditions suitable for freeze-substitution fixation. We found that aptamers are sufficiently soluble in cold organic solvents to encourage the view that this approach may be useful for the localization of specific proteins in context of cellular fine structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号