共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-six groundnut gentoypes of varied origin were evaluated for their yield, crop growth rates (C), and partitioning to reproductive sinks (p) in three trials. In the trials irrigation and sowing date were used to vary the amount of water available either throughout the crops' life, or through the grain filling phase. Genotype performance across the five environments for these attributes showed that although differences in C existed, differences in the stability of the partitioning were the dominant attribute of genotypes adapted to the drought prone Sahelian region. Data suggested that these differences were more attributable to tolerance to temperature and/or humidity than water stress. Over all treatments canopy temperatures relative to air (CATD) were strongly correlated with the C observed, but not so with yield; and differences between genotypes in the relationship between C and CATD were not statistically significant. 相似文献
2.
Roots and pods of field-grown peanut (groundnut) (Arachis hypogaea L.) were sampled at the R3, R5, and R7 developmental stages and examined in comparison to root- and pod-free soil for microbial
population densities to assess the geocarposphere and rhizosphere effects. G/ S (no. geocarposphere microorganisms/no. soil
microorganisms) and R/S (no. rhizosphere microorganisms/no. soil microorganisms) ratios were calculated for total fungi,Asperigillus flavus, spore-forming bacilli, coryneform bacteria, fluorescent pseudomonads, and total bacteria isolated on low- and high-nutrient
media. A clear geocarposphere effect was evidenced by increased population densities of bacteria and fungi associated with
developing pods compared to soil. G/S and R/S ratios were generally greater than 1.0 for all groups of microorganisms except
bacilli. G/S ratios were greater for total bacteria than for total fungi at two of the three sample times, suggesting that
bacteria were stimulated more than fungi in the zone around developing pods. In contrast, R/S ratios, were higher for total
fungi than for total bacteria at two of three sample times. The preferential association of fungi and bacteria with early
developmental stages of the pod indicates that some microorganisms are particularly well adapted for colonization of the peanut
geocarposphere. These microorganisms are logical candidates for evaluation as biological control candiates forA. flavus. 相似文献
3.
Livingstone D. Malcolm Birch Robert G. 《Molecular breeding : new strategies in plant improvement》1999,5(1):43-51
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm2 embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type). 相似文献
4.
Bacterial isolates were collected from the geocarposphere, rhizosphere, and root-free soil of field grown peanut (Arachis hypogaea L.) at three sample dates, and the isolates were identified by analysis of fatty acid methyl-esters to determine if qualitative differences exist among the bacterial microflora of these zones. Five bacterial genera were associated with isolates from soil, while pod and root isolates constituted 16 and 13 genera, respectively, indicating that bacterial diversity was higher in the rhizosphere and geocarposphere than in soil. The dominant (most frequently identified) genus across all three samples dates was Flavobacterium, for pods, Pseudomonas for roots, and Bacillus, for root-free soil. Sixteen bacterial taxa were only isolated from the geocarposphere, 7 only from the rhizosphere, and 5 only from soil. These results show that specific bacterial taxa are preferentially adapted to colonization of the geocarposphere and suggest that the soil, rhizosphere, and geocarposphere constitute three distinct ecological niches. Bacteria which colonize the geocarposphere should be examined as potential biological control agents for pod-invading fungi such as the toxigenic strains of Aspergillus flavus and A. parasiticus. 相似文献
5.
Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration 总被引:16,自引:0,他引:16
ELIZABETH A. AINSWORTH 《Global Change Biology》2008,14(7):1642-1650
Rice is arguably the most important food source on the planet and is consumed by over half of the world's population. Considerable increases in yield are required over this century to continue feeding the world's growing population. This meta-analysis synthesizes the research to date on rice responses to two elements of global change, rising atmospheric carbon dioxide concentration ([CO2 ]) and rising tropospheric ozone concentration ([O3 ]). On an average, elevated [CO2 ] (627 ppm) increased rice yields by 23%. Modest increases in grain mass and larger increases in panicle and grain number contributed to this response. The response of rice to elevated [CO2 ] varied with fumigation technique. The more closely the fumigation conditions mimicked field conditions, the smaller was the stimulation of yield by elevated [CO2 ]. Free air concentration enrichment (FACE) experiments showed only a 12% increase in rice yield. The rise in atmospheric [CO2 ] will be accompanied by increases in tropospheric O3 and temperature. When compared with rice grown in charcoal-filtered air, rice exposed to 62 ppb O3 showed a 14% decrease in yield. Many determinants of yield, including photosynthesis, biomass, leaf area index, grain number and grain mass, were reduced by elevated [O3 ]. While there have been too few studies of the interaction of CO2 and O3 for meta-analysis, the interaction of temperature and CO2 has been studied more widely. Elevated temperature treatments negated any enhancement in rice yield at elevated [CO2 ], which suggests that identifying high temperature tolerant germplasm will be key to realizing yield benefits in the future. 相似文献
6.
Bunce JA 《Annals of botany》2005,95(6):1059-1066
BACKGROUND AND AIMS: Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO(2)] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO(2)] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. METHODS: Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO(2)] and at ambient plus 350 micromol mol(-1) [CO(2)] in open top chambers. Measurements were made on pairs of leaves from both [CO(2)] treatments on a total of 16 d during the middle of the growing seasons of two years. KEY RESULTS: Elevated [CO(2)] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m(-2) d(-1) (1.4 micromol m(-2) s(-1)) for both the ambient and elevated [CO(2)] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO(2)], and respiration per unit of mass was significantly lower at elevated [CO(2)]. Respiration increased by a factor of 2.5 between 18 and 26 degrees C average night temperature, for both [CO(2)] treatments. CONCLUSIONS: These results do not support predictions that elevated [CO(2)] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. 相似文献
7.
Bunce JA 《Photosynthesis research》2001,68(3):237-245
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through
fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created
additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics
of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard
measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization
rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher
leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term
[CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic
acclimation to elevated [CO2] in this species.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
8.
9.
Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide 总被引:17,自引:9,他引:8
J. A. BUNCE 《Plant, cell & environment》1992,15(5):541-549
Seedlings of temperate deciduous tree species were grown outdoors at ambient and at an elevated concentration of carbon dioxide to examine how aspects of their gas exchange would be altered by growth at elevated carbon dioxide concentration. Leaf conductances to water vapour and net carbon dioxide exchange rates were determined periodically near midday. Whole-plant carbon dioxide efflux rates in darkness were also determined. The stomatal conductance of leaves of plants grown and measured at 700 cm3 m?3 carbon dioxide did not differ from that of plants grown and measured at 350 cm3 m?3 in Malus domestica, Quercus prinus and Quercus robur at any measurement time. In Acer saccharinum, lower conductances occurred for plants grown and measured at elevated carbon dioxide concentration only at measurement temperatures above 33°C. Photo-synthetic adjustment to elevated carbon dioxide concentration was evident only in Q. robur. All species examined had lower rates of dark respiration per unit of mass when grown and measured at elevated carbon dioxide concentration. 相似文献
10.
Limitations in carbohydrate supplies have been implicated as a factor responsible for reproductive failure under heat stress. Heat stress affects two stages of reproductive development in cowpea [Vigna unguiculata (L.) Walp.], and genotypes are available with tolerance and sensitivity to heat during these different stages. The objectives of this study were to determine the responses of these cowpea lines to ambient and elevated [CO2], under heat stress and optimal temperature, and test whether differences in carbohydrate supplies due to genotypes, CO2 enrichment and heat stress are associated with differences in sensitivity to heat during reproductive development. Plants were grown in reach-in growth chambers and subjected to day/night temperatures of either 33/20 or 33/30°C, and [CO2] levels of either 350 or 700 μmol mol-1. Under intermediate night temperature (33/20°C), all lines set substantial numbers of pods. Under high night temperature (33/30°C) with either ambient or elevated [CO2], one heat-sensitive line produced no flowers and the other set no pods, whereas the heat-tolerant line abundantly set pods. High night temperature reduced the overall carbohydrate content of the plants, especially peduncle sugars, and caused decreases in photosynthetic rates. The high pod set of the heat-tolerant line, under high night temperature, was associated with higher levels of sugars in peduncles compared with the heat-sensitive lines. The heat-tolerant line accumulated substantial shoot biomass, exhibited less accumulation of starch in leaves, and possibly had less down-regulation of photosynthesis in response to CO2 enrichment and heat stress than the heat-sensitive lines. Elevated [CO2] resulted in higher overall carbohydrate levels in heat-sensitive lines (starch in leaves, stems and peduncles), but it did not increase their heat tolerance with respect to flower production or pod set. Heat-induced damage to floral buds and anthers in the sensitive lines was associated with low sugars levels in peduncles, indicating that heat had greater effects on assimilate demand than on leaf assimilate supply. The heat-tolerant line was the most responsive genotype to elevated [CO2] with respect to pod production under either high or intermediate temperatures. 相似文献
11.
ZHAOZHONG FENG KAZUHIKO KOBAYASHI ELIZABETH A. AINSWORTH 《Global Change Biology》2008,14(11):2696-2708
We quantitatively evaluated the effects of elevated concentration of ozone (O3) on growth, leaf chemistry, gas exchange, grain yield, and grain quality relative to carbon‐filtered air (CF) by means of meta‐analysis of published data. Our database consisted of 53 peer‐reviewed studies published between 1980 and 2007, taking into account wheat type, O3 fumigation method, rooting environment, O3 concentration ([O3]), developmental stage, and additional treatments such as drought and elevated carbon dioxide concentration ([CO2]). The results suggested that elevated [O3] decreased wheat grain yield by 29% (CI: 24–34%) and aboveground biomass by 18% (CI: 13–24%), where CI is the 95% confidence interval. Even in studies where the [O3] range was between 31 and 59 ppb (average 43 ppb), there was a significant decrease in the grain yield (18%) and biomass (16%) relative to CF. Despite the increase in the grain protein content (6.8%), elevated [O3] significantly decreased the grain protein yield (?18%). Relative to CF, elevated [O3] significantly decreased photosynthetic rates (?20%), Rubisco activity (?19%), stomatal conductance (?22%), and chlorophyll content (?40%). For the whole plant, rising [O3] induced a larger decrease in belowground (?27%) biomass than in aboveground (?18%) biomass. There was no significant response difference between spring wheat and winter wheat. Wheat grown in the field showed larger decreases in leaf photosynthesis parameters than wheat grown in < 5 L pots. Open‐top chamber fumigation induced a larger reduction than indoor growth chambers, when plants were exposed to elevated [O3]. The detrimental effect was progressively greater as the average daily [O3] increased, with very few exceptions. The impact of O3 increased with developmental stages, with the largest detrimental impact during grain filling. Both drought and elevated [CO2] significantly ameliorated the detrimental effects of elevated [O3], which could be explained by a significant decrease in O3 uptake resulting from decreased stomatal conductance. 相似文献
12.
Accurate estimates of the fertilization effect that elevated carbon dioxide [CO2] has on crop yields are valuable for estimation of future crop production, yet there is still some controversy over these estimates due to possible CO2‐by‐water‐status interactions in chamber studies and the difficulty of conducting field experiments with elevated [CO2]. This study presents a new method to estimate the CO2 fertilization effect (CFE) in dry conditions (CFEdry), based on a combination of historical yield and climatic data and field experiments that do not require elevated [CO2]. It was estimated that approximately 50 years of increasing [CO2] (i.e., a 73 ppm increase) resulted in a 9% and 14% improvement of yield in dry conditions for maize and soybean, respectively, which are similar to estimates derived from free air CO2 enrichment (FACE) studies. The main source of uncertainty in this approach relates to differential effects of technology trends such as new cultivars in wet vs. dry years. Estimates of this technology–water interaction can be refined by further experimentation under ambient [CO2], offering a cost‐effective path for improving CFE estimates. The results should prove useful for modeling future yield impacts of climate change, and the approach could be used to derive estimates for other species using relatively simple yield trials. 相似文献
13.
Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature 总被引:2,自引:1,他引:2
High temperatures adversely affect crop productivity of several plant species including bell pepper (Capsicum annuum L. var. annuum). The objectives of this study were: (1) to determine whether flower ontogeny is adversely affected by high temperature during different phases of development, including pre‐ and post‐pollination events; (2) to determine the duration of high temperature exposure necessary to cause reduction in fruit set; and (3) to determine whether injury to the pistil or stamen during development is responsible for reduced fruit set during high temperature. We determined that flower buds at <2·5 mm in length, corresponding to microspore mother cell meiosis to tetrad dissolution, and flowers that reached anthesis during the high temperature exposure had reduced fruit set when exposed to 33 °C for 48 or 120 h. Flower buds at <2·5 mm in length also had reduced pollen viability when exposed to 33 °C for 120 h. Morphological examination demonstrated that meiocytes initiated tetrad formation, but after dissolution the microspores remained small and clumped without a thick exine. High temperature exposure at a late‐development, pre‐anthesis stage did not affect pistil or stamen viability, but high post‐pollination temperatures inhibited fruit set, suggesting that fertilization is sensitive to high temperature stress. 相似文献
14.
The effect of elevated carbon dioxide (CO2) on crop yields is one of the most uncertain and influential parameters in models used to assess climate change impacts and adaptations. A primary reason for this uncertainty is the limited availability of experimental data on CO2 responses for crops grown under typical field conditions. However, because of historical variations in CO2, each year farmers throughout the world perform uncontrolled yield ‘experiments’ under different levels of CO2. In this study, measurements of atmospheric CO2 growth rates and crop yields for individual countries since 1961 were compared to empirically determine the average effect of a 1 ppm increase of CO2 on yields of rice, wheat, and maize. Because the gradual increase in CO2 is highly correlated with major changes in technology, management, and other yield controlling factors, we focused on first differences of CO2 and yield time series. Estimates of CO2 responses obtained from this approach were highly uncertain, reflecting the relatively small importance of year‐to‐year CO2 changes for yield variability. Combining estimates from the top 20 countries for each crop resulted in estimates with substantially less uncertainty than from any individual country. The results indicate that while current datasets cannot reliably constrain estimates beyond previous experimental studies, an empirical approach supported by large amounts of data may provide a potentially valuable and independent assessment of this critical model parameter. For example, analysis of reliable yield records from hundreds of individual, independent locations (as opposed to national scale yield records with poorly defined errors) may result in empirical estimates with useful levels of uncertainty to complement estimates from experimental studies. 相似文献
15.
The susceptibility of soybean cultivars (cvs) to boron (B) deficiency was examined in three experiments on a Typic Tropaqualf in Northern Thailand: one experiment also included peanut cv Tainan 9 and black gram cv Regur.Without added B (B0), B deficiency depressed seed yield by 60% in soybean cv NW1 compared with 30% in cv SJ5, 40% in cv 7016, 45% in peanut, and 93% in black gram. B deficiency also induced a localised depression on the internal surface of one or both cotyledons of some soybean seeds resembling the symptom of hollow heart in peanut seeds. It induced 50% hollow heart in peanut, 17% in soybean cv NW1, 5% in SJ5, and 1% in 7016: black gram seeds had no symptoms. Addition of B decreased or eliminated the symptoms.In a comparison of 19 soybean cvs, the incidence of hollow heart symptoms in seeds at B0 varied widely from none in two cvs to 75% in cv Buchanan: cv NW1 showed intermediate susceptibility to B deficiency with 36% hollow heart in its seed while SJ5 was insensitive with 1%. Application of B eliminated hollow heart except from one seed in one cultivar. The results suggest that susceptibility to B deficiency is sufficiently important and variable among soybean genotypes to warrant its inclusion as a selection criterion when breeding cultivars for areas with low soil B. 相似文献
16.
Pedunculate oak (Quercus robur L.) was germinated and grown at ambient CO2 level and 650 ppmv CO2 in the presence and absence of the ectomycorrhizal fungus Laccaria laccata for a total of 6 month under nutrient non-limiting conditions. Mycorrhization and elevated atmospheric CO2 each supported the growth of the trees. Stem height, stem diameter, and dry matter accumulation of pedunculate oak were increased by mycorrhization. Elevated atmospheric CO2 enhanced stem height, stem diameter, fresh weight and dry weight, as well as lateral root formation of the trees. In combination, mycorrhization and elevated atmospheric CO2 had a more than additive, positive effect on tree height and biomass accumulation, and further improved lateral root formation of the trees. From these findings it is suggested that the efficiency of the roots in supporting the growth of the shoot is increased in mycorrhized oak trees at elevated atmospheric CO2.Abbreviations DW
dry weight
- FW
fresh weight
- RWC
relative water content 相似文献
17.
Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures 总被引:1,自引:7,他引:1
Two published models of canopy photosynthesis, MAESTRO and BIOMASS, are simulated to examine the response of tree stands to increasing ambient concentrations of carbon dioxide (Ca) and temperatures. The models employ the same equations to described leaf gas exchange, but differ considerably in the level of detail employed to represent canopy structure and radiation environment. Daily rates of canopy photosynthesis simulated by the two models agree to within 10% across a range of CO2 concentrations and temperatures. A doubling of Ca leads to modest increases of simulated daily canopy photosynthesis at low temperatures (10% increase at 10°C), but larger increases at higher temperatures (60% increase at 30°C). The temperature and CO2 dependencies of canopy photosynthesis are interpreted in terms of simulated contributions by quantum-saturated and non-saturated foliage. Simulations are presented for periods ranging from a diurnal cycle to several years. Annual canopy photosynthesis simulated by BIOMASS for trees experiencing no water stress is linearly related to simulated annual absorbed photosynthetically active radiation, with light utilization coefficients for carbon of ?= 1.66 and 2.07g MJ?1 derived for Ca of 350 and 700 μmol mol?1, respectively. 相似文献
18.
Wheat plants were cultivated under growth regimes combining two temperatures (ambient and 4°C above ambient temperature) with two concentrations or carbon dioxide (350 and 700 μmol mol) and two nitrogen fertilizer applications (high and low). The aim of this study was to define any changes in the acyl lipid composition of wheat grains which could result from alterations in the growth conditions. Qualitative and quantitative changes were observed in both non-starch and starch lipid fractions. Temperature was by far the most influential growth factor, although interactions between all three growth conditions occurred, as confirmed by analysis of variance. Growth at elevated temperatures had the general effect of reducing the amounts of accumulated lipids, particularly non-polar lipids (1322 nig fatty acids per 100 g fresh weight at ambient temperatures as opposed to 777 mg fatty acids per lOOg fresh weight at 4°C above ambient temperatures). There were changes in the proportions of the major non-starch as well as the starch lipids. In the former category, non-polar lipids (principally triacylglyc-erols), the membrane glycosylglyccridcs and phos-phatidylcholinc were the main constituents, whereas in the starch lipids, lysophosphatidylcholine and lysophos-phatidylethanolamine represented over 70% of the total. Depending on the growth conditions, the percentages of lipids such as monogalactosyldiacylglycerol, digalactosyl-diacylglycerol and phosphatidyleholine (non-starch) or the starch lysophosphatidylethanolamine varied 2-fold or more. Significant changes in the acyl composition of individual lipids were also observed, most often in the proportions of palmitate, oleate and linoleate. The observed alterations in wheat lipids arc likely to affect the properties of any flours derived from grain grown under climate change conditions. 相似文献
19.
It is known that juvenile hormone plays an important role in the regulation of labour division and of the different life spans, and that the microclimate of the bee hive is characterized by its high CO2 concentration and its varying temperature depending on the presence of brood.We have investigated the influence of microclimates characteristic of breeding and broodless areas on the juvenile hormone titre in the haemolymph and whole body extracts, on the corpora allata in vitro activity, on the degradation of juvenile hormone and on the dry weight of the hypopharyngeal glands using bees of known ages. A microclimate of 35°C and 1.5% CO2, as observed in the breeding area, induces a rapid and pronounced increase in the juvenile hormone titre. On the other hand, this titre remains low in bees kept at 27°C and 1.5% CO2, a microclimate associated with broodless combs. Rates of juvenile hormone synthesis by corpora allata in vitro were found to be extremely low, even in the presence of farnesenic acid, and not related to the juvenile hormone titre. In vitro incubation of juvenile hormone in haemolymph revealed no degradation while injected juvenile hormone was found to be degraded and taken up by the gut at rates only weakly correlated with the juvenile hormone titre.We propose a hypothetical model for the regulation of the juvenile hormone titre as well as the course of labour division by the varying microclimates observed in the bee hive. 相似文献
20.
H. Demmers-Derks R. A. C. Mitchell V. J. Mitchell & D. W. Lawlor 《Plant, cell & environment》1998,21(8):829-836
Effects on sugar beet ( Beta vulgaris L.) of current and elevated CO2 and temperature alone and in combination and their interactions with abundant and deficient nitrogen supply (HN and LN, respectively) have been studied in three experiments in 1993, 1994 and 1995. Averaged over all experiments, elevated CO2 (600 μ mol mol–1 in 1993 and 700 μ mol mol–1 in 1994 and 1995) increased total dry mass at final harvest by 21% (95% confidence interval (CI) = 21, 22) and 11% (CI = 6, 15) and root dry mass by 26% (CI = 19, 32) and 12% (CI = 6, 18) for HN and LN plants, respectively. Warmer temperature decreased total dry mass by 11% (CI = – 15, – 7) and 9% (CI = – 15, – 5) and root dry mass by 7% (CI = – 12, – 2) and 7% (CI = – 10, 0) for HN and LN plants, respectively. There was no significant interaction between temperature and CO2 on total or root dry mass. Neither elevated CO2 nor temperature significantly affected sucrose concentration per unit root dry mass. Concentrations of glycinebetaine and of amino acids, measured as α -amino-N, decreased in elevated CO2 in both N applications; glycinebetaine by 13% (CI = – 21, – 5) and 16% (CI = – 24, – 8) and α -amino-N by 24% (CI = – 36, – 11) and 16% (CI = – 26, – 5) for HN and LN, respectively. Warmer temperature increased α -amino-N, by 76% (CI = 50, 107) for HN and 21% (CI = 7, 36) for LN plants, but not glycinebetaine. 相似文献