首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-strand break repair in Ku86- and XRCC4-deficient cells.   总被引:24,自引:10,他引:14       下载免费PDF全文
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends or in protection of the ends from nucleases. However, end joining in XRCC4-deficient cells has not been examined. Here we show that joining of both matched and mismatched DNA ends occurs efficiently in XRCC4-deficient cells. Furthermore, analysis of junctions shows that XRCC4 is not required to protect the ends from degradation. However, nucleotide sequence analysis of junctions derived from joining of mismatched DNA ends in XRCC4-deficient cells revealed a strong preference for a junction containing a 7 nt homology. Similar results were obtained in Ku86-deficient cells. These data suggest that in the absence of XRCC4 or Ku86, joining is assisted by base pairing interactions, supporting the hypothesis that these proteins may participate in aligning or stabilizing intermediates in end joining.  相似文献   

2.
Although a defect in the DNA polymerase POLQ leads to ionizing radiation sensitivity in mammalian cells, the relevant enzymatic pathway has not been identified. Here we define the specific mechanism by which POLQ restricts harmful DNA instability. Our experiments show that Polq-null murine cells are selectively hypersensitive to DNA strand breaking agents, and that damage resistance requires the DNA polymerase activity of POLQ. Using a DNA break end joining assay in cells, we monitored repair of DNA ends with long 3′ single-stranded overhangs. End joining events retaining much of the overhang were dependent on POLQ, and independent of Ku70. To analyze the repair function in more detail, we examined immunoglobulin class switch joining between DNA segments in antibody genes. POLQ participates in end joining of a DNA break during immunoglobulin class-switching, producing insertions of base pairs at the joins with homology to IgH switch-region sequences. Biochemical experiments with purified human POLQ protein revealed the mechanism generating the insertions during DNA end joining, relying on the unique ability of POLQ to extend DNA from minimally paired primers. DNA breaks at the IgH locus can sometimes join with breaks in Myc, creating a chromosome translocation. We found a marked increase in Myc/IgH translocations in Polq-defective mice, showing that POLQ suppresses genomic instability and genome rearrangements originating at DNA double-strand breaks. This work clearly defines a role and mechanism for mammalian POLQ in an alternative end joining pathway that suppresses the formation of chromosomal translocations. Our findings depart from the prevailing view that alternative end joining processes are generically translocation-prone.  相似文献   

3.
Previous work showed that treatment of plateau-phase Chinese hamster ovary cells with the radiomimetic double-strand cleaving agent bleomycin induced very small deletions as well as interchromosomal reciprocal translocations, both of which could be ascribed to errors in end joining of DNA double-strand breaks. In an attempt to assess the possible role of TP53 in suppressing such repair errors, bleomycin-induced mutagenesis at the HPRT locus was examined in immortalized 184B5 human mammary epithelial cells (TP53(+)), and in a TP53-defective derivative, 184B5-E6tfxc6. For both cell lines, the most frequent bleomycin-induced mutations were base substitutions, with no apparent targeting to major bleomycin lesions. However, both lines also sustained single-base deletions that were targeted to expected sites of double-strand breaks, suggesting that they arose by end-joining repair of the breaks. Surprisingly, only a few large deletions or rearrangements, and no interchromosomal events involving the HPRT locus were detected among the mutants. The results suggest that in both cell lines, errors in double-strand break repair resulting in heritable large deletions and rearrangements are rare. Spectral karyotyping of bleomycin-treated 184B5 cells showed that a significant number of translocations were present shortly after bleomycin exposure, but their frequency decreased upon continued culture of the cells. Thus, for these cells, the lack of induced interchromosomal rearrangements can be explained in part by selection against such events as the cells proliferate.  相似文献   

4.
Lloyd AH  Wang D  Timmis JN 《PloS one》2012,7(2):e32255
DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (1-20 bp) deletions occurred at a minority (25-45%) of repair junctions. Approximately ~1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ.  相似文献   

5.
Nonhomologous recombination in human cells.   总被引:16,自引:5,他引:11       下载免费PDF全文
Nonhomologous recombination (NHR) is a major pathway for the repair of chromosomal double-strand breaks in the DNA of somatic cells. In this study, a comparison was made between the nonhomologous end joining of transfected adenovirus DNA fragments in vivo and the ability of purified human proteins to catalyze nonhomologous end joining in vitro. Adenovirus DNA fragments were shown to be efficiently joined in human cells regardless of the structure of the ends. Sequence analysis of these junctions revealed that the two participating ends frequently lost nucleotides from the 3' strands at the site of the joint. To examine the biochemical basis of the end joining, nuclear extracts were prepared from a wide variety of mammalian cell lines and tested for their ability to join test plasmid substrates. Efficient ligation of the linear substrate DNA was observed, the in vitro products being similar to the in vivo products with respect to the loss of 3' nucleotides at the junction. Substantial purification of the end-joining activity was carried out with the human immature T-cell-line HPB-ALL. The protein preparation was found to join all types of linear DNA substrates containing heterologous ends with closely equivalent efficiencies. The in vitro system for end joining does not appear to contain any of the three known DNA ligases, on the basis of a number of criteria, and has been termed the NHR ligase. The enriched activity resides in a high-molecular-weight recombination complex that appears to include and require the human homologous pairing protein HPP-1 as well as the NHR ligase. Characterization of the product molecules of the NHR ligase reaction suggests that they are linear oligomers of the monomer substrate joined nonrandomly head-to-head and/or tail-to-tail. The joined ends of the products were found to be modified by a 3' exonuclease prior to ligation, and no circular DNA molecules were detected. These types of products are similar to those required for the breakage-fusion-bridge cycle, a major NHR pathway for chromosome double-strand break repair.  相似文献   

6.
V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations.  相似文献   

7.
DNA double-strand breaks (DSBs) induce a signal transmitted by the ataxia-telangiectasia mutated (ATM) kinase, which suppresses illegitimate joining of DSBs and activates cell-cycle checkpoints. Here we show that a significant fraction of mature ATM-deficient lymphocytes contain telomere-deleted ends produced by failed end joining during V(D)J recombination. These RAG-1/2 endonuclease-dependent, terminally deleted chromosomes persist in peripheral lymphocytes for at least 2 weeks in vivo and are stable over several generations in vitro. Restoration of ATM kinase activity in mature lymphocytes that have transiently lost ATM function leads to loss of cells with terminally deleted chromosomes. Thus, maintenance of genomic stability in lymphocytes requires faithful end joining as well a checkpoint that prevents the long-term persistence and transmission of DSBs. Silencing this checkpoint permits DNA ends produced by V(D)J recombination in a lymphoid precursor to serve as substrates for translocations with chromosomes subsequently damaged by other means in mature cells.  相似文献   

8.
Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.  相似文献   

9.
Malaria parasites replicate asexually within their mammalian hosts as haploid cells and are subject to DNA damage from the immune response and chemotherapeutic agents that can significantly disrupt genomic integrity. Examination of the annotated genome of the parasite Plasmodium falciparum identified genes encoding core proteins required for the homologous recombination (HR) pathway for repairing DNA double-strand breaks (DSBs), but surprisingly none of the components of the canonical non-homologous end joining (C-NHEJ) pathway were identified. To better understand how malaria parasites repair DSBs and maintain genome integrity, we modified the yeast I-SceI endonuclease system to generate inducible, site-specific DSBs within the parasite’s genome. Analysis of repaired genomic DNA showed that parasites possess both a typical HR pathway resulting in gene conversion events as well as an end joining (EJ) pathway for repair of DSBs when no homologous sequence is available. The products of EJ were limited in number and identical products were observed in multiple independent experiments. The repair junctions frequently contained short insertions also found in the surrounding sequences, suggesting the possibility of a templated repair process. We propose that an alternative end-joining pathway rather than C-NHEJ, serves as a primary method for repairing DSBs in malaria parasites.  相似文献   

10.
Neal JA  Meek K 《Mutation research》2011,711(1-2):73-86
DNA double-strand breaks are extremely harmful lesions that can lead to genomic instability and cell death if not properly repaired. There are at least three pathways that are responsible for repairing DNA double-strand breaks in mammalian cells: non-homologous end joining, homologous recombination and alternative non-homologous end joining. Here we review each of these three pathways with an emphasis on the role of the DNA-dependent protein kinase, a critical component of the non-homologous end joining pathway, in influencing which pathway is ultimately utilized for repair.  相似文献   

11.
Raghavan SC  Raman MJ 《DNA Repair》2004,3(10):1297-1310
Mammalian somatic cells are known to repair DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) and homologous recombination (HR); however, how male germ cells repair DSBs is not yet characterized. We have previously reported the highly efficient and mostly precise DSB joining ability of mouse testicular germ cell extracts for cohesive and blunt ends, with only a minor fraction undergoing terminal deletion [Mutat. Res. 433 (1999) 1]; however, the precise mechanism of joining was not established. In the present study, we therefore tested the ability of testicular extracts to join noncomplementary ends; we have also sequenced the junctions of both complementary and noncomplementary termini and established the joining mechanisms. While a major proportion of complementary and blunt ends were joined by simple ligation, the small fraction having noncleavable junctions predominantly utilized short stretches of direct repeat homology with limited end processing. For noncomplementary ends, the major mechanism was "blunt-end ligation" subsequent to "fill-in" or "blunting", with no insertions or large deletions; the microhomology-dependent joining with end deletion was less frequent. This is the first functional study of the NHEJ mechanism in mammalian male germ cell extracts. Our results demonstrate that testicular germ cell extracts promote predominantly accurate NHEJ for cohesive ends and very efficient blunt-end ligation, perhaps to preserve the genomic sequence with minimum possible alteration. Further, we demonstrate the ability of the extracts to catalyze in vitro plasmid homologous recombination, which suggests the existence of both NHEJ and HR pathways in germ cells.  相似文献   

12.
DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair.  相似文献   

13.
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that the major mechanism of joining was by blunt-end ligation following removal or fill-in of the single-stranded bases. However, some break-end combinations were joined through an efficient mechanism using short repeat sequences and we have succeeded in separating this mechanism from blunt-end joining by the biochemical fractionation of extracts. Characterization of activities and sequence data in an extensively purified fraction that will join ends by the repeat mechanism led to a model where joining is initiated by 3' strand invasion followed by pairing to short repeat sequences close to the break site. Thus the joining of double-strand breaks by mammalian extracts is achieved by several mechanisms and this system will allow the purification of the factors involved in each by the judicial choice of the non-complementary ends used in the assay.  相似文献   

14.
Merkle D  Block WD  Yu Y  Lees-Miller SP  Cramb DT 《Biochemistry》2006,45(13):4164-4172
Nonhomologous end joining (NHEJ) is the primary mechanism by which mammalian cells repair DNA double-strand breaks (DSBs). Proteins known to play a role in NHEJ include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the Ku 70/Ku 80 heterodimer (Ku), XRCC4, and DNA ligase IV. One of the main roles of the DNA-PKcs-Ku complex is to bring the ends of the DSB together in a process termed synapsis, prior to end joining. Synapsis results in the autophosphorylation of DNA-PKcs, which is required to make the DNA ends available for ligation. Here, we describe a novel assay using two-photon fluorescence cross-correlation spectroscopy that allows for the analysis of DNA synapsis and end joining in solution using purified proteins. We demonstrate that although autophosphorylation-defective DNA-PKcs does not support DNA ligase-mediated DNA end joining, like wild-type (WT) DNA-PKcs, it is capable of Ku-dependent DNA synapsis in solution. Moreover, we show that, in the presence of Ku, both WT DNA-PKcs and autophosphorylation-defective DNA-PKcs promote the formation of multiple, large multi-DNA complexes in solution, suggesting that, rather than align two opposing DNA ends, multiple DNA-PK molecules may serve to bring multiple DNA ends into the NHEJ complex.  相似文献   

15.
Nonhomologous end joining (NHEJ) is a major pathway in multicellular eukaryotes for repairing double-strand DNA breaks (DSBs). Here, the NHEJ reactions have been reconstituted in vitro by using purified Ku, DNA-PK(cs), Artemis, and XRCC4:DNA ligase IV proteins to join incompatible ends to yield diverse junctions. Purified DNA polymerase (pol) X family members (pol mu, pol lambda, and TdT, but not pol beta) contribute to junctional additions in ways that are consistent with corresponding data from genetic knockout mice. The pol lambda and pol mu contributions require their BRCT domains and are both physically and functionally dependent on Ku. This indicates a specific biochemical function for Ku in NHEJ at incompatible DNA ends. The XRCC4:DNA ligase IV complex is able to ligate one strand that has only minimal base pairing with the antiparallel strand. This important aspect of the ligation leads to an iterative strand-processing model for the steps of NHEJ.  相似文献   

16.
Yu X  Gabriel A 《Genetics》2004,166(2):741-751
Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the subsequent chromosomal rearrangements among surviving cells. Under these conditions, reciprocal translocations via nonhomologous end joining (NHEJ) occur at frequencies of approximately 2-7 x 10(-5)/cell exposed to the DSBs. Yku80p is a component of the cell's NHEJ machinery. In its absence, reciprocal translocations still occur, but the junctions are associated with deletions and extended overlapping sequences. After induction of a single DSB, translocations and inversions are recovered in wild-type and rad52 strains. In these rearrangements, a nonrandom assortment of sites have fused to the DSB, and their junctions show typical signs of NHEJ. The sites tend to be between open reading frames or within Ty1 LTRs. In some cases the translocation partner is formed by a break at a cryptic HO recognition site. Our results demonstrate that NHEJ-mediated reciprocal translocations can form in S. cerevisiae as a consequence of DSB repair.  相似文献   

17.
Backup pathways of NHEJ are suppressed by DNA-PK   总被引:1,自引:0,他引:1  
In cells of higher eukaryotes double strand breaks (DSBs) induced in the DNA after exposure to ionizing radiation (IR) are rapidly rejoined by a pathway of non-homologous end joining (NHEJ) that requires DNA dependent protein kinase (DNA-PK) and is therefore termed here D-NHEJ. When this pathway is chemically or genetically inactivated, cells still remove the majority of DSBs using an alternative, backup pathway operating independently of the RAD52 epistasis group of genes and with an order of magnitude slower kinetics (B-NHEJ). Here, we investigate the role of DNA-PK in the functional coordination of D-NHEJ and B-NHEJ using as a model end joining by cell extracts of restriction endonuclease linearized plasmid DNA. Although DNA end joining is inhibited by wortmannin, an inhibitor of DNA-PK, the degree of inhibition depends on the ratio between DNA ends and DNA-PK, suggesting that binding of inactive DNA-PK to DNA ends not only blocks processing by D-NHEJ, but also prevents the function of B-NHEJ. Residual end joining under conditions of incomplete inhibition, or in cells lacking DNA-PK, is attributed to the function of B-NHEJ operating on DNA ends free of DNA-PK. Thus, DNA-PK suppresses alternative pathways of end joining by efficiently binding DNA ends and shunting them to D-NHEJ.  相似文献   

18.
19.
We have identified a nuclear factor that binds to double-stranded DNA ends, independently of the structure of the ends. It had equivalent affinities for DNA ends created by sonication or by restriction enzymes leaving 5', 3', or blunt ends but had no detectable affinity for single-stranded DNA ends. Since X rays induce DNA double-strand breaks, extracts from several complementation groups of X-ray-sensitive mammalian cells were tested for this DNA end-binding (DEB) activity. DEB activity was deficient in three independently derived cell lines from complementation group 5. Furthermore, when the cell lines reverted to X-ray resistance, expression of the DEB factor was restored to normal levels. Previous studies had shown that group 5 cells are defective for both double-strand break repair and V(D)J recombination. The residual V(D)J recombination activity in these cells produces abnormally large deletions at the sites of DNA joining (F. Pergola, M. Z. Zdzienicka, and M. R. Lieber, Mol. Cell. Biol. 13:3464-3471, 1993, and G. Taccioli, G. Rathbun, E. Oltz, T. Stamato, P. Jeggo, and F. Alt, Science 260:207-210, 1993), consistent with deficiency of a factor that protects DNA ends from degradation. Therefore, DEB factor may be involved in a biochemical pathway common to both double-strand break repair and V(D)J recombination.  相似文献   

20.
Genetic studies have implicated the Saccharomyces cerevisiae POL4 gene product in the repair of DNA double-strand breaks by nonhomologous end joining. Here we show that Pol4 preferentially catalyzes DNA synthesis on small gaps formed by the alignment of linear duplex DNA molecules with complementary ends, a DNA substrate specificity that is compatible with its predicted role in the repair of DNA double-strand breaks. Pol4 also interacts directly with the Dnl4 subunit of the Dnl4-Lif1 complex via its N-terminal BRCT domain. This interaction stimulates the DNA synthesis activity of Pol4 and, to a lesser extent, the DNA joining activity of Dnl4-Lif1. Notably, the joining of DNA substrates that require the combined action of Pol4 and Dnl4-Lif1 is much more efficient than the joining of similar DNA substrates that require only ligation. Thus, the physical and functional interactions between Pol4 and Dnl4-Lif1 provide a molecular mechanism for both the recruitment of Pol4 to in vivo DNA double-strand breaks and the coupling of the gap filling DNA synthesis and DNA joining reactions that complete the microhomology-mediated pathway of nonhomologous end joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号